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ABSTRACT

Building X-ray Diffraction Calibration Software. JOSHUA LANDE (Marlboro College,

Marlboro, VT 05344) DR. SAMUEL WEBB (Stanford Synchrotron Radiation Laboratory

at the Stanford Linear Accelerator Center, Stanford, CA 94025)

X-ray diffraction is a technique used to analyze the structure of crystals. It records

the interference pattern created when x-rays travel through a crystal. Three dimensional

structure can be inferred from these two dimensional diffraction patterns. Before the pat-

terns can be analyzed, diffraction data must be precisely calibrated. Calibration is used

to determine the experimental parameters of the particular experiment. This is done by

fitting the experimental parameters to the diffraction pattern of a well understood crystal.

Fit2D is a software package commonly used to do this calibration but it leaves much to be

desired. In particular, it does not give very much control over the calibration of the data,

requires a significant amount of manual input, does not allow for the calibration of highly

tilted geometries, does not properly explain the assumptions that it is making, and cannot

be modified. We build code to do this calibration while at the same time overcoming the

limitations of Fit2D. This paper describes the development of the calibration software and

the assumptions that are made in doing the calibration.
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INTRODUCTION

A particularly good method for probing the structure of crystals is x-ray diffraction–the

process where x-rays interact with a particular crystal of interest. Because x-rays have wave-

like properties, they scatter, or diffract, as they interact with atoms. The x-rays leaving each

atom in a crystal interfere constructively or deconstructively as a function of angle. Because

crystals have very regular structure, the interference minima and maxima are very regular.

These diffraction patterns are measured with a detector. By looking at them, we infer general

properties of a diffracted crystal such as the distance between atomic bonds.

X-rays preferentially diffract at certain angles. Because diffraction experiments image

many small crystals at different orientations, diffraction patterns have a radial symmetry

about the incoming beam. If the beam diffracts preferentially at a particular angle in one

direction normal to the incoming beam, it will also diffract at that same angle for any other

direction normal to the beam. Because of this symmetry, cones of x-rays emanate from the

sample. When we detect this pattern, we measure intensity with a flat detector. When the

cone of x-rays intersect the plane of this detector, we detect conic sections of high intensity.

When the detector is perpendicular to the incoming rays, we see circles of high intensity.

When the detector is tilted slightly, we see ellipses of high intensity. With more extreme tilts,

we can see parabolas and hyperbolas. A particular diffraction pattern is shown in figure 1.

Previous literature has determined a set of geometric transformations for dealing with

experimental data taken with a detector at an arbitrary angle to the x-rays[1]. This theory

is useful because it allows us to infer from these images physically meaningful properties of

the sample.

By measuring the parameters of an x-ray diffraction experiment, such as the particular

tilt, we can use these transformations to calculate the properties of the crystal that we are

interested in. But often, the reverse of this process is desired. We often do not precisely know

the parameters of a diffraction experiment. This happens because it is difficult to accurately
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measure these parameters. A process of calibration can be used to precisely determine

the experimental parameters. We first diffract a well understood sample. We then fit the

experimental parameters to the diffraction pattern to figure out the precise experimental

arrangement that was used. This process is done to calibrate other diffraction data. We first

image a known crystal and use it to determine these experimental parameters. We then use

the inferred experimental parameters to the analyze diffraction data that we are interested

in.

This process of calibration must be done before any sample is analyzed. Fit2D is a

program which is commonly used to do this sort of calibration. It has many limitations.

In particular, the software’s curve fitting algorithm requires a lot of time for manual entry.

Furthermore, it gives very little control over how the fitting is done. In particular, it cannot

ignore overlapping diffraction rings. It can’t account for highly tilted geometries. Also,

Fit2D is a black box. We don’t know what assumptions it is using to do the calibration,

we don’t know what type of calculations it is doing, and we cannot modify it. Because of

these issues, we built a program to properly calibrating these diffraction images. Our new

software is particularly useful because it can overcome the limitations of Fit2D and allow for

better and more reliable calibration.

THEORY

Figure 2 shows the general setup of a diffraction experiment. Here, x-rays enter the sample

from the left and diffract with various angles. Quantum theory predicts that most of the

intensity of the outgoing beam would be found in discrete cones of light.[2] One particular

cone is shown in the diagram. It is clear from the diagram that if the detector is perpendicu-

lar to the incoming x-ray source, then the detector will record a series of rings. The detector

in a diffraction experiment is often placed at an angle to the incoming beam. This is some-

times caused by experimental error and is sometimes done deliberately to record diffraction
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patterns at higher scattering angles. Figure 3 shows geometrically how this works.

Previous literature has derived geometric transforms to deal with this complication[1]. I

will summarize and then use their results.1 The wavelength is denoted by λ. Suppose that

our detector is at an angle to the incoming beam. We can characterize any tilting of the

detector as two orthogonal rotations. We will call the rotation along the x axis α and the

rotation along the y axis β. Figure 4 and 5 illustrate these rotations.

Our detector is made up of many pixels. Each pixel is addressed by a unique pair of

coordinates. We will call the pixel location of some point of interest on the detector (xd, yd).

We will call the pixel location where the x-rays would hit if they went straight through the

sample as (xc, yc). The distance between the sample and this center is d. Figure 6 illustrates

the situation. We will call the pixel scale of the image ps. This is the distance between each

pixel (e.g. 1000 mm / pixel). Finally, we will call (x′′,y′′) the distance from the center of the

image to our point of interest. It is easy to convert from pixel values to distances using the

formula

x
′′ = (xd − xc) × ps y

′′ = (yd − yc) × ps. (1)

(x′′,y′′) are easy to measure but do not directly tell us anything that is physically meaningful.

We must use a transformation to get at physically meaningful quantities.

We can imagine another detector set up the same distance away from the detector. This

new detector is perpendicular to the incoming beam as is shown in figure 7. We are interested

in where the same x-rays that were detected at (x′′,y′′) would have been detected on this

imaginary detector. We will call this new point (x,y).

1Note that I will stray from convention by labeling what literature calls γ by α. This is done to keep a
more consistent notation.
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The transform that we are interested in is taken from [1]:

x =
dx

′′ cos(β)

d + y
′′ sin(α) + x

′′ sin(β)
y =

dy
′′ cos(α)

d + y
′′ sin(α) + x

′′ sin(β)
. (2)

We can invert these formula:

x
′′ =

yd

d cos(β) − x sin(β) − y cos(β) tan(α)
y
′′ =

xd cos(β)/ cos(α)

d cos(β) − x sin(β) − y cos(β) tan(α)
.

(3)

Physicists are interested angles instead of distances because they do not depend on detector

placement. First, we define 2θ. It is the angle of scattering of the incoming beam. Refer to

Figure 8. We define it as follows:

tan(2θ) =
r

d

with r
2 = x

2 + y
2
. (4)

Physicists mainly care about the quantity Q and χ:

Q =
4π sin(2θ/2)

λ

tan(χ) =
y

x

. (5)

χ is the azimuthal angle around the incoming beam. Q is particularly interesting because it

is proportional to the change in momentum of the photons that arrive at the detector. Both

theory and experiment have shown that the Q values for diffraction peaks are a material

constant.

Suppose that we now consider a pixel value (xd,yd), we can use equation 1 to convert

it to (x′′,y′′). We can use equation 2 to calculate (x,y) and then equation 5 to calculate

Q and χ. There are 7 parameters used in this transformation. The pixel scale is fixed by

the detector but the other six parameters are free to vary from experiment to experiment.

The free parameters are xc, yc, α, β, d, and λ. They characterize a particular diffraction
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experiment. A common procedure when analyzing diffraction data is to take a diffraction

pattern and calculate the Q values for each ring. Once the experimental parameters are

known, these formulas give a straightforward way to do the calculations.

HANDLING DIFFRACTION DATA

Our calibration program is written in Python, which is particularly adept for building sci-

entific applications. It is a high level languages which makes it robust, flexible, and easy

to write. Python has many packages for handling scientific data. These packages allow for

fast array operations and include powerful mathematical functions. It also has a powerful

library for creating platform independent GUIs. Furthermore, Python acts as a powerful

glue language which can interface well with code written in many other languages. This

turned out to be very useful. The only practical drawback to Python is performance. It

tends to run slower then other programming languages. We decided that our program would

have an acceptable performance and we used several strategies to speed up our program.

In order to calibrate diffraction data, we first had to read the data into our program.

The diffraction experiment at Stanford Linear Accelerator Center captures diffraction images

using the Mar345 Image Plate Detector System. The Mar345 detector generates .mar3450

data files. A Mar diffraction file is made up of three sections as is specified by [3]. The

first section is the header. It is a set of two column ascii. The header contains general

information about the image, e.g. the ps value, the time that the experiment ran for, an

estimate for the wavelength of the incoming x-rays, the pixel center of the image and the

distance from the detector. The second section is a list of intensity values that were too high

to store inside of the data array. This data is stored as uncompressed packed binary. The

image itself is finally stored as compressed packed binary. The data is compressed using the

lossless ”pck” compression algorithm developed by Jan P. Abrahams. The algorithm was

developed specifically to compress x-ray diffraction data. It is particularly efficient because
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it exploits radial symmetry in the images. It achieves close to 70 percent compression.

Code to decompress this format can be found at [4]. As far as I can tell, this is the only

implementation of the decompression algorithm that has been written. It is written in the

C programming language. To use the algorithm, we wrote a Python wrapper around the C

code. Wrapping the C code was decidedly non-trivial but proved to be an elegant solution.

THE CALIBRATION ALGORITHM

Calibration is used to precisely determine the experimental parameters (xc, yc, d, λ, α, and β)

of a particular diffraction experiment. These parameters can then be used to accurately and

precisely analyze other diffraction data. It is easiest to first imagine an experiment where one

already knows precisely the experimental parameters. If you collected a diffraction pattern,

you can calculate Q and χ for any of the rings. We can do this procedure in reverse. Many

crystals have well measured Q values. So, for any set of experimental parameters, we can use

equations 1, 3, and 5 to calculate exactly what should show up on the detector. It should

be easy to compute this with what is actually recorded. To calibrate an image, we vary

the experimental parameters until the output image closely resembles the expected image.

Calibration is a large fitting procedure. We fit the experimental parameters to the observed

data. Presumably, the experimental parameters that fit best the observed data are the real

experimental parameters.

The whola point of this process is to image a standard crystal before imaging important

samples. The standard crystal gives you enough information to figure out how the experiment

is set up. We can then use this information to precisely and accurately analize the rest of

the data.

My calibration algorithm works as follows. It begins by finding a list of peaks around the

image of maximum intensity (corresponding to the peaks on the diffraction rings). To get

this list of peaks, the code needs a decent initial guess at what the experimental parameters
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should be. It also needs a list of the true Q value for the image. Furthermore, it requires

a ranges dQ for all the Q values. These ranges do not tell where the true Q should be, but

instead where in the image to look for the Q values. The program makes the assumption

that when the the initial guess is good enough the Q ranges will entirely contain the acutal

peak while at the same time not contaning any other peaks. With this assumption, the code

picks a large number of χ values. For each χ slice and for each Q value, the code moves

along the straight line from Q − dQ to Q + dQ and records all of the intensity values along

the way. It uses a linear interpolation to get intensity values between real pixels. After it

has recored all the intensity values, it fits a Gaussian curve to the peak. The center of the

Gaussian becomes the Q value at the peak. The code converts this Q and χ pair into pixel

values to generate a list of all of the pixel values where there were peaks. Figure 9 gives a

general sense of how this works.

Once the code has calculated the peak list, it then defines a goodness of fit function as

follows. For any set of experimental parameters, it takes the entire peak list and converts

that list into Qfit and χfit values. The particular Q and χ values will depend upon the

experimental parameters. We know the true Q value for the peak also since that was one

of the user inputs. Presumably, once we picked the true experimental parameters, these Q

values should be exactly the same. We can quantify how close these experimental parameters

are to the true values as follows:

Residual(xc,yc,d,λ,α,β) =
∑

All pairs

(Qfit − Qreal)
2
. (6)

The closer the experimental parameters are to the true parameters, the lower a residual.

Ideally, the residual should be 0 for a perfect fit. I had my code numerically minimized this

function of 6 variables. To do so, I used an existing non-linear minimization package called

levmar[5]. levmar performs the Levenberg-Marquardt least-squares minimization procedure

to minimize an arbitrary function of n dimensions. By minimizing the residual function, my
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code will calibrate x-ray diffraction data.

FUTURE WORK

There is quite a bit of work to be done on this project. Ideally, this program could develop

into a full fledged x-ray diffraction data reduction package. It could be able to handle all of

the standard diffraction computations. In this respect, there are many fetures which can be

added to the program. A more refined graphical user interface could then be developed to

make the program easy to use.
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FIGURES

Figure 1: Here is a diffraction pattern of Lanthanum Hexaboride. it is commonly used to
calibrate diffraction experiments. Notice the discrete diffraction rings.
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Figure 2: An X-Ray diffraction setup. X-rays scatter from a 3-D sample and are captured
by a 2-D detector.

Figure 3: This diagram illustrates how tilted geometries allow for the collection of diffraction
data at more extreme angles without the need for a larger detector.
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α

Figure 4: The rotation angle α.

β

Figure 5: The rotation angle β. Any detector rotation can be characterized as a rotation by
both α and β.
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(xc, yc)

(xd,yd)
d

Figure 6: The setup of the experiment. Here, the detector is titled by an angle with respect
to the experiment. The image that is recorded on the detector will therefore look distorted.

d

(x,y)

Figure 7: One can imagine another diffraction experiment where the detector is perpendicular
to the experiment. (x,y) is the point that the x-ray that arrived at (x′′,y′′) would have landed
at if it arrived at this detector instead.
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(x,y)

2θ

rχ

Figure 8: Above is the angle 2θ for a particular point (x,y). 2θ is the angle of scattering of
the beam. χ is the azimuthal angle.

Constant χ Slice

Q1

Q1 − dQ1

Q1 + dQ1

Q2

Q2 − dQ2

Q2 + dQ2

Figure 9: Here is a schematic diagram of the peak finding algorithm. For a particular χ

slice, my code fits Gaussians along the line to find the peaks.
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