
A Plan of Concentration in the Natural Sciences

Crystal Diffraction and Quantum
Wave Packet Scattering

Author:

Joshua Lande

Plan Sponsors:
Dr. Travis Norsen

Dr. James Mahoney

Marlboro College

Marlboro, Vermont

May, 2008



2



Table of Contents

Table of Contents 3

I Introduction 9

II A Discussion of Reflection and Transmission. . . 13

1 A Derivation of the Reflection and Transmission Coefficients 17

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Normalization of the Energy Eigenstates . . . . . . . . . . . . . . . . . . . . 18

1.3 A Gaussian Wave Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 ψ as a Superposition of Energy Eigenstates . . . . . . . . . . . . . . . . . . . 22

1.5 The Time Evolution of ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 The R Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 The T Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Arbitrary Wave Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 A Special Case – The Step Potential 29

3 Another Example: the Finite Potential Barrier 33

3.1 The Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A Cute Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III A Theoretical Discussion of Crystal Diffraction. . . 39

4 Crystal Diffraction 43

4.1 The Bravais Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Crystal Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Visualization of Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



5 Powder Diffraction 51

6 Microwave Optics 55

IV Area Diffraction Machine Manual 59

7 Tips and Tricks 61

7.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Caking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4 Integrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.5 Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 An Example 65

9 Viewing Diffraction Data 79

9.1 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Loading Multiple Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3 Saving the Diffraction Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10 Detector Geometries 83

10.1 The Three Tilt Angels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 The β Tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 The α Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.4 The R Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.5 Relationship to Pixel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 89
10.6 Inverting the Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.7 Q, 2θ, and χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11 Calibration 91

11.1 The Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 The Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.3 Calibrating With the Program . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.4 The “Number of Chi?” and “Stddev?” Input . . . . . . . . . . . . . . . . . 96
11.5 Work in λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.6 Fixing Calibration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.7 Displaying Constant Q Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.8 Displaying Constant ∆Q Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.9 Displaying Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.10Masking Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.11Saving the Peak List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.12Handling Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.13Handling Q Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4



11.14The “Get From Header?” Input . . . . . . . . . . . . . . . . . . . . . . . . . 103

12 Pixel Masking 105

12.1 Threshold Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

12.2 Polygon Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12.3 Masking Caked Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

13 Caking 113

13.1 The Caking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

13.2 Caking with the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13.3 AutoCake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13.4 Displaying Q and ∆Q Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13.5 Displaying Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13.6 Polarization Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13.7 Working in 2θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13.8 Saving Cake Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13.9 Saving Cake Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

14 Intensity Integration 123

14.1 The Integration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

14.2 Integrating with the Program . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14.3 The Integration Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

14.4 Working in 2θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

14.5 AutoIntegrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

14.6 Constraining the Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

14.7 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

14.8 Saving Integrated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

15 Macros 129

15.1 Record Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

15.2 Run Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

15.3 The Macro File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

15.4 Looping Over Diffraction Data . . . . . . . . . . . . . . . . . . . . . . . . . . 131

15.5 The PATHNAME and FILENAME Commands . . . . . . . . . . . . . . . . 132

15.6 Loops Over Multiple Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

15.7 The FOLDERPATH and FOLDERNAME commands . . . . . . . . . . . . . 134

15.8 Setting Colors in a Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

15.9 Little Tidbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

15.10Macro Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

15.11What You Can’t Do With Macros . . . . . . . . . . . . . . . . . . . . . . . . 143

16 Software Licensing 145

5



V Plan Exams 147

17 Comprehensive Exam, part1 149

17.1 A solid spherical ball of uniform mass density (e.g., a pool ball) rolls without 149
17.2 A planet orbits the sun under the influence of the gravitational force. Suppose 150
17.3 Alice and Bob are at opposite ends of a spaceship whose rest length L = 20cs 153
17.4 The point of suspension of a pendulum (mass m, length L) is allowed to move 156
17.5 A bucket full of water rotates at uniform angular velocity ω. It is near the surf157

18 Comprehensive Exam, part2 159

18.1 A charge +Q is distributed uniformly along the z axis from z = a to z = +a. 159
18.2 A long coaxial cable is made from two conducting cylindrical shells of radius 162
18.3 An AC voltage source (amplitude V0, angular frequency ω) drives a circuit con 164
18.4 Finn has a toy magnifying glass designed to look at bugs. Its a cylinder whose 165
18.5 Find the transmission coefficient for light waves passing through a pane of gla 167
18.6 A circular coil of wire (radius R) carries current I and lies in the x− y plane 170

19 Comprehensive Exam, part3 173

19.1 What is Compton scattering? What role did it play in the early days of quant 173
19.2 Calculate the lifetime (in seconds) for each of the four n = 2 states of hydrog 175
19.3 Estimate (or really: put a bound on) the ground state energy of Hydrogen usi 181
19.4 You’ve learned about the Born approximation in the context of 3D scattering 182
19.5 Let . . . be the matrix representation of the Hamiltonian for a three-state syste 184
19.6 What is Bell’s Theorem and what does it prove? (No need to recapitulate the 186

20 Comprehensive Exam, part4 189

20.1 Here is a very simplified model of the unwinding of two-stranded DNA molecu 189
20.2 A cold white dwarf is held up against gravitational collapse by the pressure of 190
20.3 Suppose a star were made of an ideal gas composed of molecules of mass m at 193
20.4 The latent heat (or ‘heat of fusion’) for the ice-water phase transition is 80 cal 194
20.5 In The Physical Universe, Shu discusses the ‘Missing-Mass Problem’ on pages 195
20.6 The heat capacity of non-metallic solids at sufficiently low temperatures is pro 197
20.7 Considering the earth as a thermodynamic system, it’s clear that over geologic 198

VI Appendix 199

A How and Why to Think about Scattering. . . 201

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.2 The plane-wave account and its problems . . . . . . . . . . . . . . . . . . . . 203
A.3 Scattering probabilities and packet widths . . . . . . . . . . . . . . . . . . . 207
A.4 Gaussian wave packet scattering from a step potential . . . . . . . . . . . . . 210
A.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6



VII Bibliography 215

7



8



Part I

Introduction

9





The largest portion of my plan is software that I wrote to perform an analysis of X-Ray
Powder diffraction analysis. I became interested in diffraction initially last the summer.
I participated in the Science Undergraduate Laboratory Internships and interned at the
Stanford Synchrotron Radiation Laboratory which is at the Stanford Linear Accelerator
Center. My advisor was Dr. Samuel Webb, a beamline scientist who is involved with
diffraction research performed at the Synchrotron. My project was initially born out of
frustration with available that does powder diffraction analysis.

I would like to acknowledge all those who helped me write this plan. This research was
partially funded by my family. Thanks!

11



12



Part II

A Discussion of the Reflection and

Transmission Coefficients for Wave

Packet Scattering off an Arbitrary

Potential Barrier

13





Abstract

In this paper, we will derive the reflection and transmission coefficients for a Gaussian wave
packet to travel through an arbitrary potential barrier. These equations should be thought of
as the fundamental equations governing reflection and transmission. We will show that our
equations reduce in the wide wave packets limit to the plane The reflection and transmission
coefficients derived for plane waves should be in tern thought of as approximate value valid
for wide wave packets. We will extend this argument to arbitrary wave packets and show how
to generalize the argument. We will then take as a special case the step potential and perform
a Taylor expansion of the reflection and transmission coefficients to derive approximate (but
more accurate then plane wave) expressions for the coefficients. We will then examine the
rectangular barrier potential and show that our expression for the reflection and transmission
coefficients are qualitatively different from those from the plane wave approximation. This
provides a good example of why our equations for the refection and transmission coefficients
should be thought of as fundamental.
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Chapter 1

A Derivation of the Reflection and

Transmission Coefficients

1.1 Definitions

We can characterize an arbitrary potential that we would like a wave packet to scatter off as

V (x) =











0 x < 0

Vm(x) 0 ≤ x ≤ a

V0 x > a.

(1.1)

Here, we assume that the potential is zero until x = 0 and that it ends at some constant
value V0 as x = a. Other than that, it can do anything between x = 0 and x = a. Figure 1.1
shows a sketch of this potential for some particular Vm(x).

We are interested in finding the energy eigenstates for this potential. We will do this by
finding general solutions to the time independent Schrödinger equation. For this potential,
wavefunctions have the form

ψk =











Aeikx +Be−ikx x < 0

ψm(x) 0 ≤ x ≤ a

Ceiκx x > 0.

(1.2)

V (x)

a0 x

V0
Figure 1.1: Here is a plot of the po-
tential defined in equation 1.1. The
potential is 0 for values less than 0
and V0 for values greater than a. The
potential is some arbitrary unspeci-
fied function for values in between.
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with

κ2 = k2 − 2mV0

~2
= k2 − p2. (1.3)

This is only a formal solution because we do not know what ψm(x) is. All we can say is that
it is some arbitrary solution to the Schrödinger equation for the arbitrary potential Vm(x)
that ensures that both ψ and ψ′ are continuous. We can do quite a lot without actually
specifying exactly what ψm(x) is. We write the probability current for the incoming and
outgoing waves as

j = − i~

2m

(

ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)

. (1.4)

For a plane wave with ψ = Aeikx, the probability current is

j =
~k

m
|A|2. (1.5)

Because the probability current must be conserved, the probability current for the incoming
wave must equal the probability current for the reflected and transmitted waves:

~k

m
|A|2 =

~k

m
|B|2 +

~κ

m
|C|2. (1.6)

This simplifies to
∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

+
κ

k

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

= 1. (1.7)

1.2 Normalization of the Energy Eigenstates

Because ψk involves infinite plane waves, the particular normalization that we pick is in some
sense arbitrary. Will pick following normalization1

ψk(x) =
1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x) + ψk,m(x)θ(x)θ(a − x) +
C

A
eiκxθ(x− a)

]

. (1.8)

This convention is picked so that
∫

ψ∗
k′ψkdx = δ(k − k′) (1.9)

1 Here, we have defined

θ(x) =

{

0 x < 0

1 x > 0.

It follows that

θ(x)θ(a − x) =











0 x < 0

1 0 < x < a

0 x > a.

18



We can prove this as follows:

∫

ψ∗
k′(x)ψk(x)dx =

1

2π

∫
[(

e−ik′x +
B′∗

A′∗ e
+ik′x

)

θ(−x) + ψ∗
k′,m(x)θ(x)θ(a − x) +

C ′∗

A′∗ e
−iκ′xθ(x− a)

]

×
[(

eikx +
B

A
e−ikx

)

θ(−x) + ψk,m(x)θ(x)θ(a− x) +
C

A
eiκxθ(x− a)

]

dx. (1.10)

The primes on A′, B′, C ′, and κ′ are necessary because they are functions of k (really k′ in
this case). Since the θ functions are orthogonal and square to themselves, we have

∫

ψ∗
k′(x)ψk(x)dx =

1

2π

∫ 0

−∞
ei(k−k′)xdx+

1

2π

∫ 0

−∞

B

A
e−i(k+k′)xdx

+
1

2π

∫ 0

−∞

B′∗

A′∗ e
i(k+k′)xdx+

1

2π

∫ 0

−∞

B′∗B

A′∗A
ei(k′−k)xdx

+
1

2π

∫ a

0

ψ∗
k′,mψkmdx+

1

2π

∫ ∞

a

C ′∗C

A′∗A
ei(κ−κ′)xdx. (1.11)

The first term is equal to δ(k − k′)/2.2 The second and third term are each proportional to
δ(k + k′). Since the eigenfunctions we are dealing with are only for incoming waves, all our
waves have positive wave vector. It must be that k + k′ is positive so δ(k + k′) = 0. The
second and third term integrate to 0. The fourth term is equal to (B′∗B/A′∗A)×δ(k−k′)/2.
The sixth term is a more complicated. It is equal to

1

2π

∫ ∞

a

C ′∗C

A′∗A
ei(κ−κ′)xdx = e−(κ−κ′)a 1

2π

∫ ∞

0

C ′∗C

A′∗A
ei(κ−κ′)xdx (1.13)

= e−(κ−κ′)aC
′∗C

A′∗A

δ(κ− κ′)

2
(1.14)

=
C ′∗C

A′∗A

δ(κ− κ′)

2
. (1.15)

In the second step, we have changed variables from x to x + a. In the last step, the phase
was ignored since is is unity whenever the other terms have support. This simplifies to3

κ′

k

C ′∗C

A′∗A
δ(κ− κ′) (1.22)

2 To prove this, we use the identity

δ(k − k′) =
1

2π

∫

∞

−∞

ei(k−k′)xdx. (1.12)

3 To prove this, we need to write δ(κ− κ′) in terms of δ(k − k′). We can do so using the identity

δ(g(x)) =
∑

i

δ(x− xi)

dg(xi)/dx
. (1.16)

19



Plugging all the terms in, we get

∫

ψ∗
k′(x)ψk(x)dx =

δ(k − k′)

2
+
B′∗B

A′∗A
× δ(k − k′)

2
+

∫ a

0

ψ∗
k′,mψk,mdx+

κ′

k′
C ′∗C

A′∗A

δ(k − k′)

2
. (1.23)

Since these delta functions are non-zero only when k = k′, we can without loss of generality
replace the primed values in the coefficients with their unprimed values. We get

∫

ψ∗
k′(x)ψk(x)dx =

δ(k − k′)

2
+

|B|2
|A|2 × δ(k − k′)

2
+

∫ a

0

ψ∗
k′,mψk,mdx+

κ

k

|C|2
|A|2

δ(k − k′)

2
(1.24)

= δ(k − k′) +

∫ a

0

ψ∗
k′,mψk,mdx (1.25)

Our wave functions must be orthogonal in order for them to be an eigenstate of the Hamil-
tonian. For this to be true, it must be the case that

∫ a

0

ψ∗
k′,mψk,mdx

∣

∣

∣

∣

k 6=k′

= 0. (1.26)

Here xi are the real roots of g(x). To use this identity, we can think of κ−κ′ as g(x). The slightly confusing
thing is that we have been thinking of both κ and κ′ as variables while the identity works with only one
variable. We will ‘think’ of κ as the variable and κ′ as a constant. When we do this, we note that the real
roots of our function are k = k′ and k = −k′.

δ(κ− κ′) = δ(
√

k2 − 2mV0/~2 −
√

k′2 − 2mV0/~2) (1.17)

= δ(g(k)) (1.18)

=
δ(k − k′)

dg(k′)/dk
.+

δ(k + k′)

dg(−k′)/dk . (1.19)

Since we are only dealing with incident plan waves where k is positive, the second part of this equation is
equal to 0. We can calculate the denominator of the first term as

dg(k)

dk
=

1

2

1
√

k2 − 2mV0/~2
× 2k (1.20)

= k/κ (1.21)

It follows that δ(κ− κ′) = (κ′/k′) × δ(k − k′).
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V (x)

a0 x

Figure 1.2: This is a plot of the
real part of ψ(x, 0) defined in
equation 1.32. The plot also
shows V (x) on top of it. This
plot is possibly misleading be-
cause V (x) and ψ(x, 0) have dif-
ferent units and are therefore not
comparable. They are simply
plotted on top of each other. The
scale of one can not be compared
to the scale of another.

Furthermore, the value of this integral when k = k′ must be finite. Thus, when k = k′, we
have4

∫ a

0

ψ∗
k′,mψk,mdx

∣

∣

∣

∣

k=k′

= ∞ + [finite value] = ∞ (1.30)

We see that
∫ a

0

ψ∗
k′,mψk,mdx = δ(k − k′). (1.31)

1.3 A Gaussian Wave Packet

We are interested in calculating the reflection and transmission coefficients of a wave packet
through an arbitrary potential. Because of its simplicity, we will first work with a wave
packet that is Gaussian. We write our initial wavefunction as

ψ(x, 0) = (πσ2)−1/4eik0(x+a)e−(x+a)2/2σ2

. (1.32)

Our wave packet is centered at −a in position space and k0 in k space. Figure 1.2 shows a
plot of psi(x, 0) and a plot of V (x). We are interested in calculating limt→∞ ψ(x, t). The

4We can make this argument a little bit more rigours by integrating this function in k space over an
infinitesimal range from k′ − ǫ to k′ + ǫ

∫ k′+ǫ

k′
−ǫ

∫

∞

−∞

ψ∗

k′ψkdxdk =

∫ k′+ǫ

k′
−ǫ

(

δ(k − k′) +

∫ a

0

ψ∗

k′,mψk,mdx

)

dk (1.27)

= 1 +

∫ a

0

∫ k′+ǫ

k′
−ǫ

ψ∗

k′,mψk,mdkdx (1.28)

The second term integrates to 0 for any wave function that is finite at all points. This will always hold so
long as the potential doesn’t do anything funny like go off to infinity. By definition then, we see that

∫

ψ∗

k′ (x)ψk(x)dx = δ(k − k′). (1.29)
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fraction of the wave packet to the left of x = 0 is the reflection probability and the fraction
of the wave packet to the right of x = 0 is the transmission probability. To calculate this, we
will write out our wave function as a linear combination of the energy eigenfunction. Then,
we will advance ψ in time (by multiplying each eigenfunction by an energy phase). We will
be able to take the large t limit to find the percent of the wave to the left and to the right.

1.4 ψ as a Superposition of Energy Eigenstates

We are interested in writing ψ(x, 0) as a superposition of plane wave states

ψ(x, 0) =

∫

φ(k)ψk(x)dk. (1.33)

We have to solve for φ(k):

(πσ2)−1/4eik0(x+a)e−(x+a)2/2σ2

=

∫

ψk(x)φ(k)dk (1.34)

We can multiply each side by ψ∗
k′(x) and integrate over all x:

∫

ψ∗
k′(x)(πσ2)−1/4eik0(x+a)e−(x+a)2/2σ2

dx =

∫ ∫

ψ∗
k′(x)ψk(x)φ(k)dxdk (1.35)

= φ(k′) (1.36)

Here, we have used the orthogonality of the ψk, Since there are no corresponding unprimed
variables, we can get rid of the primes in this equation

φ(k) = (πσ2)−1/4

∫ ∞

−∞

1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x) + ψk,m(x)θ(x)θ(a− x)+

C

A
eiκxθ(x− a)

]

× eik0(x+a)e−(x+a)2/2σ2

dx. (1.37)

We can deal with the four terms separately. We assume that the wave packet comes in from
far to the left so w ≪ a. This means that the term exp(−(x + a)2) has vanishing support
for x > 0. The first term in the equation is

(πσ2)−1/4

√
2π

∫ ∞

−∞
e−ikxeik0(x+a)e−(x+a)2/2σ2

θ(−x)dx. (1.38)

Since the Gaussian has vanishing support for x > 0, we can approximate this integral by
removing the θ(−x) term We have

(πσ2)−1/4

√
2π

∫ ∞

−∞
e−ikxeik0(x+a)e−(x+a)2/2σ2

dx. (1.39)

22



We make the change of variables x′ = x+ a

(πσ2)−1/4

√
2π

∫ ∞

−∞
ei(k0x′−kx′+ka)e−x′2/2σ2

dx′ = eika (πσ2)−1/4

√
2π

∫ ∞

−∞
ei(k0−k)x′

e−x′2/2σ2

dx′. (1.40)

Solving this integral, we find that our first term is5

(

σ2

π

)1/4

e−(k−k0)2σ2/2eika (1.41)

We can now deal with the second term. We can get rid of the θ(−x) term since it is
equal to 1 when the rest of the integrand has support. What is left is the ordinary Fourier
transform integral which gives the −k component of the original ψ. But we assume that our
incoming wave packet has no left moving wave components and thus this integral must be
0.6

The third and fourth terms both integrate to 0. This is because the exponential term in
the integrals have vanishing support for x > 0 whereas the θ(x)θ(a−x) and θ(x) terms have
vanishing support for x < 0. The function has no support for all values. The integral must
be 0.

From this, we see that

φ(k) =

(

σ2

π

)1/4

e−(k−k0)2σ2/2eika. (1.42)

1.5 The Time Evolution of ψ

We can write the wave function for our Gaussian wave packet at any arbitrary time by
multiplying all the eigenstates in equation 1.33 by the phase associated with their time
evolution:

ψ(x, t) =

∫

φ(k)ψk(x)e
−iE(k)t/~ (1.43)

=

∫
(

σ2

π

)1/4

e−(k−k0)2σ2/2eika × 1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x)+

ψk,m(x)θ(x)θ(a− x) +
C

A
eiκxθ(x− a)

]

e−i~k2t/2mdk.

(1.44)

5 Here we are using the identity
∫

∞

−∞

e−ax2+bxdx = eb2/4a

√

π

a
.

6This is actually an approximation. The wave packet’s distribution in k-space is Gaussian so there is
some amplitude for the packet to have any k value–even negative values! The amplitude for the packet to
have a negative k values and therefore the Fourier component for the packet to be moving to the left will
be negligible so long as the width of the wave packet in k space (roughly 1/σ) is small in comparison to the
central value of k. This is a reasonable assumption of a well defined wave packet incident on the barrier.

23



The first term in this equation corresponds to the incoming wave. It dies out for large t.
The second term is the reflected wave.

ψR(x, t) =

(

σ2

4π3

)1/4 ∫

e−i~k2t/2me−(k−k0)2σ2/2eika

(

B

A

)

e−ikxθ(−x)dk. (1.45)

The third term is the part of the wave in the potential V (x). It also dies out for large t. The
fourth term is the transmitted wave.

ψT (x, t) =

(

σ2

4π3

)1/4 ∫

e−i~k2t/2me−(k−k0)2σ2/2eika

(

C

A

)

eiκxθ(x− a)dk (1.46)

1.6 The R Term

In order to calculate the reflection coefficient, we examine the reflected part of the wave
packet ψR(x, t). For large t, this wave will exist only for x < 0. We can remove the θ(−x)
term. If we make the substitution x = −x, we can now write ψR(x, t) as

ψR(x, t) =

∫

eikx

√
2π
φR(k)dk. (1.47)

We have7

ψR(x, t) = −
(

σ2

4π3

)1/4 ∫

e−i~k2t/2me−(k−k0)2σ2/2eika

(

B

A

)

eikxdk. (1.48)

Therefore,

φR(k) = −
(

σ2

π

)1/4

e−i~k2t/2me−(k−k0)2σ2/2eika

(

B

A

)

. (1.49)

We write the reflection coefficient as

R = lim
t→∞

∫

|φR(k)|2 dk. (1.50)

R =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

dk. (1.51)

1.7 The T Term

In order to calculate the transmission coefficient, we examine the transmitted part of the
wave packet ψT (x, t). For large t, the transmitted packet is entirely to the right of x = a

7Remember that when we make the change of variables, the limits of integration change. The limits are
changed back at the cost a minus sign.
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and we can remove the θ(x − a) term. When we make the change of variables from k to
√

k2 + p2, we can write ψT (x, t) as

ψT (x, t) =

∫

eikx

√
2π
φT (k)dk (1.52)

where

ψT (x, t) =

(

σ2

4π3

)1/4 ∫

e−i~(k2+p2)t/2me−(
√

k2+p2−k0)2σ2/2eika

(

C

A

)

eikx k
√

k2 + p2
dk. (1.53)

Therefore,

φT (k) =

(

σ2

π

)1/4

e−i~(k2+p2)t/2me−(
√

k2+p2−k0)2σ2/2eika

(

C

A

)

k
√

k2 + p2
. (1.54)

We can then write the total probability of transmission as

T = lim
t→∞

∫

|φT (k)|2 dk. (1.55)

For our wave packet, we have

T =

(

σ2

π

)1/2 ∫

e−(
√

k2+p2−k0)2σ2

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2
k2

k2 + p2
dk. (1.56)

We can then change variables back to k =
√

k2 − p2

T =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2
√

k2 − p2

k
dk. (1.57)

We get8

T =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2 κ

k

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

dk. (1.58)

1.8 Interpretation of Results

When we take the wide wave packet limit, our wavefunction approaches a plane wave with
wave vector k0. In this limit, we can approximate |C/A| and |B/A| by their value at k = k0.
When we do so, we find that

lim
t→∞

R =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

lim
t→∞

T =
κ

k

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

(1.59)

8There is a one part of this derivation that I glossed over. A and C are functions of k so they actually
change during our change of variables. Technically, we should probably denote them with a new name after
the change. But we then change variables back and the A and C term revert to their previous value. No
harm is caused by this omission.
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These are what are typically called the reflection and transmission coefficients Rk and Tk for
wave packet scattering off a step barrier. We see that these terms are approximate and valid
in the wide wave packet limit whereas the equations we derive are exact.

Furthermore, equation 1.42 can be interpreted to shows that the probability amplitude
for our wave packet to have wave vector k is

P (k) = |φ(k)|2 = e−(k−k0)2σ2

. (1.60)

For our Gaussian wave packet, we can write the reflection and transmission coefficients as

R =

∫

P (k)Rkdk T =

∫

P (k)Tkdk. (1.61)

These equations are just what we would expect. The reflection coefficient of a plane wave is
just the sum (or technically integral) of the probability of the incoming wave packet having
a particular wave vector times the reflection coefficient for a wave having that wave vector.

1.9 Arbitrary Wave Packets

Our derivation of equations 1.61 was actually much less general then it need be. There is no
reason that we need to assume that the incoming wave packet is Gaussian. Instead, we can
just say that there is some incoming wave packet ψ(x, t) which initially is far to the left of
x = 0. Next, we write

ψ(x, 0) =

∫

ψk(x)φ(k)dk. (1.62)

So,

φ(k)dk =

∫

ψ∗
k′ψ(x, 0)dx. (1.63)

It is still true that
P (k) = |φ(k)|2. (1.64)

Although we cannot work out an analytic expression for φ(k), we can still carry through
with the calculations.

ψ(x, t) =

∫

φ(k)ψk(x)e
−iE(k)t/~ (1.65)

Or,

ψ(x, t) =

∫

φ(k)ψk(x)e
−iE(k)t/~ (1.66)

=

∫

φ(k) × 1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x) + ψk,m(x)θ(x)θ(a− x)

+
C

A
eiκxθ(x− a)

]

e−i~k2t/2mdk.

(1.67)

26



Just like before, the reflected part of the wave function is

ψR(x, t) =
1√
2π

∫

φ(k)

(

B

A

)

e−ikxθ(−x)e−i~k2t/2mdk (1.68)

Again, in the large t limit we can ignore the θ(−x) We can write this equation as

ψR(x, t) =

∫

eikx

√
2π
φR(k)dk (1.69)

if we make the same x = −x change of variables. We get

ψR(x, t) = − 1√
2π

∫

φ(k)

(

B

A

)

e−i~k2t/2mdk. (1.70)

We have

φR(k) = −e−i~k2t/2mφ(k)

(

B

A

)

. (1.71)

As before

R = lim
t→∞

∫

|φR(k)|2 dk =

∫

|φ(k)|2
∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=

∫

P (k)Rkdk (1.72)

We can do the same for the transmission term

ψT (x, t) =
1√
2π

∫

φ(k)

(

C

A

)

eiκxθ(x− a)e−i~k2t/2mdk. (1.73)

In the large t limit, we can ignore the θ(x−a) term. If we make the change of variables from
k to

√

k2 + p2, we can write ψT (x, t) as

ψT (x, t) =

∫

eikx

√
2π
φT (k)dk (1.74)

where

φT (k) = e−i~(k2+p2)t/2meikaφ
(

√

κ2 + p2
)

(

C

A

)

k
√

k2 + p2
. (1.75)

As before,

T = lim
t→∞

∫

|φT (k)|2 dk =

∫

|φ(
√

κ2 + p2)|2 k
√

k2 + p2

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

dk (1.76)

We can change variables back from k to
√

k2 − p2. When we do so, we get

T =

∫

|φ(k)|2κ
k

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

dk =

∫

P (k)Tkdk (1.77)

Our derivation of equation 1.61 are perfectly general. They hold for an arbitrary potential
and an arbitrary incoming wave packet.
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Chapter 2

A Special Case – The Step Potential

In this section, we will discuss as a practical example the simplest example of a potential
barrier–the step potential

V (x) =

{

0 x < 0

V0 x > 0.
(2.1)

This can be though of as the potential in equation 1.1 with a = 0. Our wave function is

ψk(x) =
1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x) +
C

A
eiκxθ(x)

]

. (2.2)

We know that ψ and ψ′ must be continuous at x = 0. These conditions imply that

A+B = C kA− kB = κC. (2.3)

Or,

B

A
=
k − κ

k + κ

C

A
=

2k

k + κ
. (2.4)

Therefore, the reflection and transmission coefficients across this step barrier are

R =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

(

k − κ

k + κ

)2

dk (2.5)

and

T =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2 κ

k

(

2k

k + κ

)2

dk. (2.6)

These equations have no analytic solution.1 Nevertheless, we can approximate the solution
by Taylor expanding the (B/A)2 and (C/A)2 factors around k = k0 and doing each Gaussian
integral individually. Note that both equations are of the form

G =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

f(k)dk. (2.7)

1At least, no obvious analytic solution.
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Expanding f(k) gets us

f(k) = f(k0) + f ′(k0)(k − k0) +
f ′′(k0)

2
(k − k0)

2 + . . . (2.8)

Plugging into the equation above gets

G =

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

(

f(k0) + f ′(k0)(k − k0) +
f ′′(k0)

2
(k − k0)

2 + . . .

)

dk. (2.9)

The first term in the integral is2

f(k0)

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

dk = f(k0). (2.10)

Since x exp(−ax2) is an odd function, we have

∫ ∞

−∞
xe−ax2

dx = 0. (2.11)

The second term in the integral is 0. The third term in the integral is3

f ′′(k0)

(

σ2

π

)1/2 ∫

(k − k0)
2e−(k−k0)2σ2

dk. (2.12)

The third term in the integral is
1

2

1

σ2
× f ′′(k0). (2.13)

Our integral becomes

G = f(k0) +
1

2

1

σ2
f ′′(k0) + . . . (2.14)

For the T term, we have

f(k) =
κ

k

(

C

A

)2

(2.15)

2 We can calculate this by using the identity

∫

∞

−∞

e−ax2

dx =

√

π

a

and change variables to x = (k − k0).
3We calculate this by using the identity

∫

∞

−∞

e−ax2

x2dx =
1

2

√

π

a3

and doing the same change of variables as above.
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We can work out the derivatives of this function4

f(k) =

(

C

A

)2
κ

k
=

4kκ

(k + κ)2
(2.16)

f ′(k) =
(k + κ)24(κ+ k2/κ) − 4kκ× 2(k + κ)(1 + k/κ)

(k + κ)4
(2.17)

=
4κ+ 4k2/κ− 8k

(k + κ)2
(2.18)

f ′′(k) =
(k + κ)2 (4k/κ+ 4 × (κ× 2k − k2 × k/κ)/κ2 − 8)

(k + κ)4
(2.19)

=
−4k3/κ3 − 8k2/κ2 + 28k/κ− 16

(k + κ)2
(2.20)

= −
(

4k

κ3
+

16

κ2

)(

k − κ

k + κ

)2

. (2.21)

It follows that, including the first non-vanishing correction, the transmission coefficient is

T =
4k0κ0

(k0 + κ)2
−
(

2k0

κ3
0

+
8

κ2
0

)(

k0 − κ0

k0 + κ0

)2
1

σ2
. (2.22)

As was discussed in section 1.8, in the limit of large σ, the transmission coefficient reduces
to the classical formula.

The R term can be worked out in the same manner

f(k) =

(

B

A

)2

(2.23)

=

(

k − κ

k + κ

)2

(2.24)

f ′(k) =
(k + κ)22(k − κ)(1 − k/κ) − (k − κ)22(k + κ)(1 + k/κ)

(k + κ)4
(2.25)

= −4

κ

(

k − κ

k + κ

)2

(2.26)

f ′′(k) =
4

κ2

k

κ

(

k − κ

k + κ

)2

+
16

κ2

(

k − κ

k + κ

)2

(2.27)

=

(

4k

κ3
+

16

κ2

)(

k − κ

k + κ

)2

(2.28)

Including the first non-vanishing correction, we have

R =

(

k0 − κ0

k0 + κ0

)2

+

(

2k0

κ3
0

+
8

κ2
0

)(

k0 − κ0

k0 + κ0

)2
1

σ2
. (2.29)

4We use the fact that dκ/dk = k/κ.
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Chapter 3

Another Example: the Finite

Potential Barrier

3.1 The Eigenfunctions

We will now example the next most simple potential – the finite potential barrier. It is
defined as

V (x) =











0 x < 0

V0 0 ≤ x ≤ a

0 x > a.

(3.1)

We can solve the time independent Schrödinger equation to find eigenstates of energy E:

ψ =











Aeikx +Be−ikx x < 0

Deiκx + Ee−iκx 0 ≤ x ≤ a

Ceikx x > a.

(3.2)

We can impose continuity of ψ and ψ′ to find the relationship of the plane wave coefficients.

A+B = D + E (3.3)

kA− kB = κD − κE (3.4)

Deiκa + Ee−iκa = Ceika (3.5)

κDeiκa − κEeiκa = kCeika. (3.6)

We can combine equations 3.5 and 3.6 to get

D =
κ + k

2κ
ei(k−κ)aC (3.7)

E =
κ− k

2κ
ei(k+κ)aC. (3.8)
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We can combine equations 3.3 and 3.4 to get

A = (k + κ)D + (k − κ)E. (3.9)

Using equations 3.7 and 3.8, we get

A =

(

(k + κ)2

4kκ
ei(k−κ)a − (k − κ)2

4kκ
ei(k+κ)a

)

C. (3.10)

Squaring gets us

|A|2 =

(

(k + κ)2

4kκ
e−iκa − (k − κ)2

4kκ
eiκa

)(

(k + κ)2

4kκ
eiκa − (k − κ)2

4kκ
e−iκa

)

|C|2 (3.11)

=
(k + κ)4 + (k − κ)4 − (k + κ)2(k − κ)22 cos(2κa)

16k2κ2
|C|2 (3.12)

=
2k4 + 8k2κ2 + 2κ4 + 4k2κ2 − (2k4 − 4k2κ2 + 2κ4)(1 − 2 sin2(κa))

16k2κ2
|C|2 (3.13)

=

(

1 +
(k2 − κ2)2

42κ2

)

|C|2. (3.14)

Therefore, we calculate the transmission coefficient for a plane wave with wave vector k to
transmit across a rectangular barrier

T
(rect)
k =

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

=
1

1 + (k2 − κ2) sin(κa)/4k2κ2
. (3.15)

We have to be a little clear here about notation so as to avoid confusion. I will refer to the
transmission coefficient for a plane wave of wave vector k for a potential step as Tk and the
transmission coefficient for a plane wave of wave vector k for a rectangular barrier as K

(rect)
k .

The same applies for the reflection coefficients. We can rewrite T
(rect)
k in terms of Rk and Tk:

T
(rect)
k =

1

1 − 4Rk sin2(κa)/T 2
k

. (3.16)

Using the fact that
T

(rect)
k +R

(rect)
k = 1, (3.17)

we see that1

R
(rect)
k =

4Rk sin2(κa)/T 2
k

1 − 4Rk sin2(κa)/T 2
k

. (3.19)

1Of course, we could calculate the transmission term using the equation

R
(rect)
k =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

(3.18)

and calculate the reflection coefficient explicitly, but it is just more work and gets the same answer.
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Figure 3.1: Here is a
schematic diagram of the
cute argument for deriving
the reflection and trans-
mission coefficients for a
wave packet incident on a
rectangular barrier. There is
some amplitude for the wave
to reflect or transmit at the
left side of the barrier. This
is represented by some part
of the wave transmitting and
some part reflecting. The
same thing happens at the
right side of the barrier and
so on. Some part of the wave
will be perpetually stuck in
the barrier and successive
parts of the wave will leave
on either side.

3.2 A Cute Argument

To calculate the actual reflection from the rectangular barrier, we must first find the mo-
mentum space representation of the incoming wave packet. We can then write the reflection
as a

R =

∫

P (k)R
(rect)
k dk. (3.20)

Although this integral is terribly ugly, it is the exact expression for the reflection of a wave
off of a rectangular barrier.

There is a cute argument that can be used to derive this same reflection and transmission
coefficients for the rectangular potential. We imagine the incoming wave as a localized packet
moving to the right. Suppose that its wave vector distribution is centered on k0. This is
shown in figure 3.1. When the wave arrives at the left of the potential, there is some
amplitude for it to reflect into the barrier and some amplitude for it to transmit through
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the barrier. These coefficients are, at least approximately, just the plane wave coefficients
for a plane to transmit through a step potential. Next, there is some amplitude for the wave
packet which transmitted the first time to reflect off the barrier on the right and then to
transmit through the barrier on the left.2 This would add a term Tk0Rk0Tk0 to the reflection
probability. Of course, there is some amplitude for the wave to transmit the first time, reflect
off the barrier on the right, reflect off the barrier on the left, reflect off the barrier on the
right, and to finally transmit through the barrier on the left. This will add a term Tk0R

3
k0
Tk0

to the total reflection. The total reflection will be a sum of all the possible ways that the
wave could be reflected:

R(total) = Rk0 + Tk0Rk0Tk0 + Tk0R
3
k0
Tk0 + . . . (3.21)

= Rk0 +Rk0T
2
k0

(1 +R2
k0

+R4
k0

+ . . .) (3.22)

= 2Rk0/(1 +Rk0). (3.23)

Of course, this expression will not valid generally because of many of the objects brought
up earlier in this paper about using plane waves to calculate reflection and transmission
coefficients. But it should be valid under certain assumptions which we can write formally.
In particular, we insists that the wave packet is sufficiently close to a plane wave. This is
true when the width of the wave packet in k space is sufficiently narrow:

∆k ≪ k0. (3.24)

We also require that the wave wave packet is sufficiently narrow in comparison to the square
barrier that it interacts with only one side of the barrier at any one time:

a≫ w ≈ 1/∆k. (3.25)

Formally, we expect this expression for the reflection coefficient to be valid when

1/a≪ ∆k ≪ k0. (3.26)

We can prove that the exact result for the reflection coefficient (equation 3.19) will reduce
in the proper limit (equation 3.26) to equation 3.23. We have

R =

∫

P (k)
4Rk sin2(κa)/T 2

k

1 − 4Rk sin2(κa)/T 2
k

dk. (3.27)

First, we note that the limit holds only when the average energy of the incoming beam k0 is
large. This is true only when Rk0 ≈ 0 and Tk0 ≈ 1. In this limit, the denominator is just 1
and we can ignore the other factor of Tk:

R =

∫

P (k)4Rk sin2(κa)dk. (3.28)

2This argument is a bit lacking because we have not worked out the reflection and transmission coefficients
for a plane wave going the other way across a potential step. It is completely trivial to work it out and it
turns out that the reflection and transmission coefficients are exactly the same.
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To good approximation, we can model the incoming wave packet in k space as relatively
constant over some range from k0 − ∆k to k0 + ∆k. The probability is

P (k) =











0 k < k0 − ∆k

1/2∆k k0 − ∆k ≤ k ≤ k0 + ∆k

0 k > k0 + ∆k.

(3.29)

Our integral becomes

R =

∫ k0+∆k

k0−∆k

1

2∆k
4Rk sin2(κa)dk. (3.30)

In the limit ∆k ≪ k0, we know that Rk and Tk do not vary substantially over our integral
range and can be taken outside of the integral and replaced with their value at k0:

R = 4Rk0

1

2∆k

∫ k0+∆k

k0−∆k

sin2(κa)dk. (3.31)

Since a ≫ 1/∆k, the function sin(κa) oscillates many time as k varies from k0 − ∆k to
k0 + ∆k. We may carry out the integral by multiplying the width of the integral by the
average value 1/2 of sin squared:

R = 4Rk0

1

2∆k
× 2∆k

1

2
= 2Rk0. (3.32)

Of course, this is not exactly the same as equation 3.23 derived using the cute argument.
But since that formula is only valid in the large k0 limit, that equation also approaches
2Rk0 . The formalism introduces in this paper correctly predicts the reflection coefficient for
the rectangular potential. We can also understand where the 2Rk0 comes from in an even
more intuitive way. Refer back to figure 3.1. Since the Rk0 term is small, we see that the
only appreciable terms which will contribute to the reflection of the plane wave are the first
reflection Rk0 off the left part of the barrier and the term where the wave packet transmits,
reflects, and transmits. It has a value Tk0Rk0Tk0 ≈ Rk0 . Any of the higher order terms
require at last three reflections and will be negligible, so the total reflection is approximately
2Rk0 .

On the other hand, if we naively used the plane wave approximation for a plane wave of
wave vector k, we would have though that the reflection coefficient was

R
(rect)
k0

=
4Rk0 sin2(κ0a)/T

2
k0

1 − 4Rk0 sin2(κ0a)/T 2
k0

. (3.33)

Of course, taking the same limits as in equation 3.26, we find the denominator to again
be approximately 1 and can again ignore the Tk0 term. But even so, we would predict the
reflection probability to be

R
(rect)
k0

→ 4Rk0 sin2(κ0a). (3.34)

This function oscillates from 0 to 4Rk0 and is qualitatively different from the exact result
derived above. We see that this the plane wave approximation is qualitatively different in
this case from the exact result.
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Part III

A Theoretical Discussion of Crystal

Diffraction and an Experimental

Investigation of Microwave Diffraction
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Abstract

We will describe the theory of crystal diffraction. We will then describe the theory of powder
diffraction. The theoretical discussion in this paper and several of the figures closely follows
chapter 6 of [8]. We will then describe an experimental investigation into crystal diffraction
that was done using the Pasco microwave optics kit.
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Chapter 4

Crystal Diffraction

4.1 The Bravais Lattice

Crystals are very regular structures. A Bravais lattice is a mathematical device used to
describe the regularity and self similarity of a crystal. A Bravais lattice is an array of lattice
points. Each lattice point’s position is of the form

R = n1a1 + n2a2 + n3a3. (4.1)

Here, a1, a2, and a3 are three linearly independent basis vectors and n1, n2, n3 can be any
possible integer.

The simplest Bravais lattice is the cubic lattice. It represents a cubic crystal structure.
A lattice cell of this structure is shown in figure 4.1. The lattice vectors are defined as:

a1 = ax̂, a2 = aŷ, a3 = aẑ. (4.2)

There are two other very common Bravais lattices. Once is the face-centered cubic lattice.
It is a cubic lattice where each side of the cubes have a lattice point in the middle. A

a1
a2

a3

Figure 4.1: The cubic lattice. This
is the simplest Bravais lattice.
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face-centered cubic lattice is shown in figure 4.2a. We can pick as a set of Bravais lattice
vectors:

a1 = a
2
(ŷ + ẑ), a2 = a

2
(ẑ + x̂), a3 = a

2
(x̂ + ŷ). (4.3)

These are labeled in the figure. The other common structure is the body-centered cubic. It
can be thought of as a cubic lattice where each cube has another lattice point in the middle
of it. Part of this crystal is shown in figure 4.2b. We could pick as our set of Bravais lattice
vectors j

a1 = ax̂ a2 = aŷ a3 = a
2
(x̂ + ŷ + ẑ). (4.4)

But there is a more useful set of Bravais lattice vectors

a1 = a
2
(ŷ + ẑ − x̂), a2 = a

2
(ẑ + x̂ − ŷ), a3 = a

2
(x̂ + ŷ − ẑ). (4.5)

These vectors are shown in the figure.

a3

a1

a2

(a) A cubic cell of the face-centered cubic lat-
tice.

a3

a1

a1

(b) A cubic cell of the body-centered cubic lattice.

4.2 The Reciprocal Lattice

We will introduce the reciprocal lattice. It will be an important tool in discussing crystal
diffraction. The reciprocal lattice for a Bravais lattice is as all wave vectors Q that have the
periodicity of a Bravais lattice. Mathematically, this means that

eiQ·(r+R) = eiQ·r (4.6)
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for all R in the Bravais lattice. This condition is equivalent to

eiQ·R = 1. (4.7)

The reciprocal lattice is also a Bravais lattice so so a reciprocal lattice is generated by
reciprocal lattice vectors. We can construct reciprocal lattice vectors from Bravais lattice
lattice vectors as follows

b1 = 2π
a2×a3

a1 · (a2×a3)
b2 =2π

a3×a1

a1 · (a2×a3)
b3 = 2π

a1×a2

a1 · (a2×a3)
(4.8)

Then, any vector in the reciprocal lattice vector Q can be written as

Q = q1b1 + q2b2 + q3b3. (4.9)

We can prove that this vector satisfies equation 4.7 as follows. Since a2×a3 is normal to a2

and a3, it follows that a2 · b1 = a3 · b1 = 0. Furthermore,

a1 · b1 = a1 ·
[

2π
a2×a3

a1 · (a2×a3)

]

= 2π (4.10)

It follows that1

bi · aj = 2πδij . (4.12)

For any Bravais lattice vector of the form R = n1a1 + n2a2 + n3a3 we have

Q · R = 2πq1n1 + q2n2 + q3n3 (4.13)

from which it follows that equation 4.7 is only satisfied if and only if q1, q2, and q3 are all
integers. From this, we see that b1, b2, and b3 are reciprocal lattice vectors.

As an example, we can determine the reciprocal lattice vectors for the body-centered
cubic lattice from equation 4.5. The denominator of equation 4.8 is

a1 · (a2×a3) = a
2
(ŷ + ẑ − x̂) · [a

2
(ẑ + x̂ − ŷ)× a

2
(x̂ + ŷ − ẑ)] = a3/2 (4.14)

1 Here, we use the identity

a1 · (a2×a2) = a2 · (a2×a1) = a3 · (a1×a2). (4.11)
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We calculate each of the terms

b1 = 2π
a2×a3

a1 · (a2×a3)
(4.15)

= 2π
a
2
(ẑ + x̂ − ŷ)× a

2
(x̂ + ŷ − ẑ)

a3/2
(4.16)

= 2π
a

(ŷ + ẑ) (4.17)

b2 = 2π
a3×a1

a1 · (a2×a3)
(4.18)

= 2π
a
2
(x̂ + ŷ − ẑ)× a

2
(ŷ + ẑ − x̂)

a3/2
(4.19)

= 2π
a

(ẑ + x̂) (4.20)

b3 = 2π
a1×a2

a1 · (a2×a3)
(4.21)

= 2π
a
2
(ŷ + ẑ − x̂)× a

2
(ẑ + x̂ − ŷ)

a3/2
(4.22)

= 2π
a

(x̂ + ŷ). (4.23)

(4.24)

The reciprocal lattice for a body-centered cubic crystal is a face-centered cubic lattice. It
is also true that the reciprocal lattice for a face-centered cubic is a body-centered cubic.
The easiest way to see this is to note from the symmetry of equation 4.7 that the reciprocal
lattice of a reciprocal lattice is the original Bravais lattice.

4.3 Crystal Diffraction

Figure 4.2: The Bragg condition for con-
structive interference and therefore inten-
sity maxima. We divide the crystal into
Bragg planes. Bragg said that there would
be constructive interference where the light
reflected off the Bragg planes was in phase.

b b

b b b

bb

b b b

b

b b b

b
d sin(θ)

θ
d

Crystal diffraction is an important way to learn about the internal structure of matter.
Bragg proposed a rather unphysical model to explain wave diffraction off crystals. He said
that we can divide a crystal into Bragg planes. This is shown in figure 4.2. We can think of
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the incoming waves as scatter off of the Bragg planes. There will be construcive interference
only when the light leaving the Bragg pleans is in phase. The condition for constructive
interference is knwon as Bragg’s Law:

nλ = 2d sin θ. (4.25)

Here, d is the distance between Bragg planes and θ is the incident angle of the waves. This
condition holds for any integral n. There are many ways of dividing up a crystal into Bragg
planes and each one can lead to diffraction peaks.

b

b

n̂

R cos θ = R · n̂

R cos θ′ = −R · n̂′

k′

k′

k k

n̂′

R

Figure 4.3: This figures shows
two atoms separated by a Bravais
lattice vector R. This diagram
shows the path difference taken by
two beams of light that diffract
through the crystal.

The Von Laue approach to studying diffraction is more physical but leads to the same
conclusion. We models crystal scattering by having waves scatter off of each atom in the
crystal separately. The condition for constructive interference is that the path difference of
the waves for all the atoms is only different by integers time the wavelength. Constructive
interference for a particular pair of atoms seperated by a Bravais lattice vector R is shown
in figure 4.3. Two beams of light enter from the top, are scattered by the atoms, and leave
to the right. Our beam is monochromatic so the incoming waves have the same momentum
k. We assume that the diffraction is elastic so the waves all leave with the same wave vector
(|k′| = |k|).

The path difference is

R cos θ +R cos θ′ = R · (n̂ − n̂′). (4.26)

The Von Laue condition for constructive interference is that

R · (n̂ − n̂′) = mλ (4.27)

for some integer m. If we multiply by 2π/λ, we get

R · (k̂ − k̂
′
) = 2πm. (4.28)

Or,

ei(k
′

−k)·R = 1. (4.29)
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This condition must hold for all Bravais lattice vectors R, Q = k′ − k must be an element
of the reciprocal lattice.

We can prove that this condition is equivalent to Bragg’s law. Since our beam is
monochromatic, |k| = |k′|. From this, it follows that k = |k − Q|. Squaring both sides
of the equation

k2 = |k − Q|2 (4.30)

k2 = k2 − 2k · Q +Q2 (4.31)

k · Q = 1
2
Q2 (4.32)

k · Q̂ = 1
2
Q. (4.33)

the component of k parallel to Q is exactly half way along the reciprocal lattice vector Q.
k must lie on a plane which is the perpendicular bisect of Q. This is a Bragg plane. This is
shown in figure 4.4.

Figure 4.4: This diagram shows Q = k′−k

when k = k′.

b

b

k′

k

1
2
Q

1
2
Q

Figure 4.5: This figures shows figure 4.4.
with k′ moved onto the Bragg plane and
the head of −k moved onto the head of
k′. This diagram shows that we can think
of diffraction as being reflected off some
plane in the crystal. We see from this fig-
ure that the incident and reflected angles
are equal.

θ

θ

Q = k′ − k

−k
k′

k

b

Now, redraw figure 4.4 by moving the reciprocal lattice vector k′ onto the Bragg plane
and moving k onto its head. This is shown in figure 4.5. Here, the angle between k and the
Bragg plane and k′ and the Bragg plane must both be θ. Furthermore, for Bragg planes a
distance d apart, the reciprocal lattice vectors parallel to them all have distances of the form
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Q = 2πn/d with n an integer. From the diagram, we see that Q = 2k sin(θ). Using this, we
have

k sin θ = πn/d. (4.34)

Since k = 2π/λ, we derive Bragg’s law.

4.4 Visualization of Diffraction

b b

b b b

bb

b b b

b

b b b

b

b b

b b b

b b b

b b

b

b

b

b

b

K

k

k′

Figure 4.6: The Ewald sphere con-
struction. We draw the incoming wave
vector k starting at some reciprocal lat-
tice point. We draw a circle of radius
k centered at the head of k (really,
it should be a sphere). If the Ewald
sphere intersects some other reciprocal
lattice point, we can draw a new vec-
tor k′ from that point to the center of
the circle such that k − k′ is in the re-
ciprocal lattice. This is the condition
for light to preferentially scatter. So,
whenever the Ewald sphere intersects
a reciprocal lattice point, we will have
constructive interference.

We introduce a new construction called called the Ewald sphere to help think about
diffraction. Figure 4.6 show a diagram of an Ewald sphere. We begin by placing the tail of
the incoming wave vector on a reciprocal lattice vector. We then draw a sphere of radius |k|
centered on the head of k. This is called the Ewald sphere. Whenever another reciprocal
lattice vector intersects the Ewald sphere, we can draw a reflected vector k′ that begins
at the other reciprocal lattice vector and ending at the head of k such that k′ − k is in
the reciprocal lattice. This is the condition for constructive interference. So only when a
reciprocal lattice point intersects that Bragg plane will there be constructive interference,
and we can use the Ewald construction to determine the angle of scattering.
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Chapter 5

Powder Diffraction

Although a presentation of powder diffraction will not be needed for the following discussion
of microwave optics, it will be discussed here because of provides a background for the powder
diffraction software part of my plan.

Q

b

k

k′

Ewald Sphere

Reciprocal lattice points

(a)

Q

k

k′

2θ

b

π−2θ
2

(b)

Figure 5.1: These figures show the Ewald sphere for powder diffraction. Because powder
diffraction is diffraction off of many small crystals with different orientations, there can be
constructive interferences for reciprocal lattice vectors rotate at any angle. In these figures,
we draw an Ewald sphere and then one particular reciprocal lattice vector Q which is rotated
through all possible angles. The intersection of these two spheres leads to constructive
interference (since Q = k − k′). Therefore, for each reciprocal lattice vector there will be
associated scattering in a cone. 2θ is the angle between k and k′.

Our previous discussion of crystal diffraction assumed that the crystal that we are imag-
ing represents a Bravais lattice and is self similar over very large distances. But powder
diffraction is different because what is imaged is a crystalline powder, where there are many
pieces of crystal which are large on a microscopic scale but small on a macroscopic scale.
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Powder diffraction is achieved experimentally by grinding a crystal with a mortar and pestle
until it is very fine.

When we perform diffraction on a powder, we effectively scatter some light off of crystals
with every possible orientation. This corresponds to crystals with reciprocal lattice vectors
that are rotated in all possible directions.

We can draw an Ewald sphere to analyze this situation. The reason why our Ewald
sphere is different is because each reciprocal lattice vector will generate a sphere (with
different points on the sphere corresponding to different crystals in the powder). The Ewald
sphere will intersect the sphere of one of th reciprocal lattice vectors in a circle1 Figure 5.1
shows a figure of these two spheres.

This circle of intersection will correspond to a cone of light emanating from the scattering
powder. The scattering angle 2θ can be calculated from figure 5.1b as follows. Since we have
drawn an equilateral triangle, it must be that

cos

(

π − 2θ

2

)

=
Q/2

k
(5.1)

Or,

Q = 2k sin(2θ/2). (5.2)

Since k = 2π/λ, we have

Q =
4π sin(2θ/2)

λ
. (5.3)

Therefore, if we know the magnitudes of the reciprocal lattice vectors for a particular crys-
tal, we can use equation 5.3 to calculate the scattering angles that would be found when
performing powder diffraction. Alternately, we could measure the scattering angles due to
powder diffraction and use those to calculate the magnitude of the reciprocal lattice vectors
of the crystal. These values often be used to reconstruct the structure of the reciprocal
lattice and subsequently the actual Bravais lattice. Powder diffraction therefore provides an
experimental technique to determine the structure of crystals.

The primary purpose of the diffraction software that was written as part of this plan is
to infer the Q values from powder data by measuring the scattering angle.2 The reason why
the software is so complicated is because what is directly measured experimentally is an area
diffraction pattern. The cones of light intersect the area detector in conic sections and it is
difficult in practice to work from the area data to a list of Q values. We will explain how we
can use the list of Q values to determine the crystalline structure of some powder sample.
For example, below is a a list of the crystal Lanthanum Hexaboride’s Q values

1This only happens for reciprocal lattice vectors smaller then 2k.
2Actually, all the program really does is produce a plot of intensity as a function of Q and another

program must be used to calculate the actual Q values based on the peaks of the intensity plot.
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Figure 5.2: A picture of of a face-centered cubic Bravais lattice. On top of many of the
lattice points is the distance to the lattice point from the bottom left lattice point if the
space of a lattice cube is 1.

1.511543809 = 0.707 × 2.137646823 ≈
√

1/2 × 2.137646823
2.137646823 = 1.000 × 2.137646823 = 1 × 2.137646823

2.618102966 = 1.225 × 2.137646823 ≈
√

3/2 × 2.137646823

3.023087619 = 1.414 × 2.137646823 ≈
√

2 × 2.137646823

3.379873753 = 1.581 × 2.137646823 ≈
√

5/2 × 2.137646823

3.702525225 = 1.732 × 2.137646823 ≈
√

3 × 2.137646823
4.275148198 = 2.000 × 2.137646823 ≈ 2 × 2.137646823

4.534631428 = 2.121 × 2.137646823 ≈
√

9/2 × 2.137646823

4.77990514 = 2.236 × 2.137646823 ≈
√

5 × 2.137646823

5.013313099 = 2.345 × 2.137646823 ≈
√

11/2 × 2.137646823

5.23603139 = 2.449 × 2.137646823 ≈
√

6 × 2.137646823

5.44989618 = 2.549 × 2.137646823 ≈
√

13/2 × 2.137646823
These Q values are given in units of inverse angstrom. If we examine the ratio of the

Q values, we see from figure 4.2a that it is the same as the ratio of the lengths of the
face centered cubic Bravais lattice.3 It must be that the reciprocal lattice is face-centered

3Actually, I suspect that this list of Q values did not come from real data because the numbers come
out a little too perfect. I was given these Q values to use during diffraction image calibration. These values
are used to measure parameters of the experimental setup when Lanthanum Hexaboride is imaged. These
values are probably calculated based on our best guess at what the lattice spacing is because that is what
the data should be calibrated off of. Presumably, experimentally measured Q values are not quite so nice.
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cubic with a cubic cell of width 2.137646823/Å. This means that the Bravais lattice is
body-centered cubic with a cubic cell of width 2.93Å.
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Chapter 6

Microwave Optics

(a) The Pasco microwave transmitter. This pic-
ture is from [10].

(b) The Pasco microwave receiver.
This picture is from [10].

Figure 6.1:

Because of Bragg’s law, to measure a crystal with spacing of order d, one must use light
whose wavelength is of similar size. This is so the scattering angle θ is neither too large nor
too small. Typically, x-ray diffraction (wavelength of order 1 angstrom) is used to study
solids who’s crystalline structure typically is of order 1 angstrom.

Pasco Scientific manufactures an experimental kit that can be used to study diffraction at
a much different scale. It creates electromagnetic waves in the microwave spectrum. Pasco
claims that their transmitter produces microwaves of wavelength 2.85cm. Because of this,
the crystal that should be diffracted should have a characteristic spacing of centimeters,
which is easily visible and constructable.

To realize this experimentally, the Pasco microwave diffraction kit comes with a trans-
mitter, a receiver, a goniometer, and a rotating table. Figures of the transmitter and receiver
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(a) The goniometer. The circular middle
allows for the measurement of the angle
between the arms. The transmitter and
the receiver can slide directly onto the
two arms. This picture is from [10].

(b) The rotating table. This table fits
on top of the circular middle of the go-
niometer. A crystalline structure can
be placed on top of it. This picture is
from [10].

Figure 6.2: The cubic lat-
tice that came with the
microwave diffraction kit.
The cubic lattice contains
100 metal spheres. It is a
5 × 5 × 4 array. Picture
from [10].

Figure 6.3: The equip-
ment setup. Here, the re-
ceiver and transmitter are
attached to the arm of the
goniometer and the rotat-
ing table is placed on the
middle of it. The crys-
talline structure is placed
on top of the table. Pic-
ture from [10].
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are shown in figure 6.1. Figures of the goniometer and rotating table are shown in figure 6.
The goniometer acts as a base which attaches the transmitter to the receiver. The middle
of the goniometer holds the rotating table and on top of that rests the crystalline structure
which will be images. A figure of the crystalline structure which the Pasco microwave optics
kit comes with in shown in figure 6.2. It is a 5× 5× 4 cubic structure. A figure of the total
assembly is shown in figure 6.3.

Using this experimental setup, we can pick a particular Bragg plane and measure the
intensity of the scattered microwaves as a function of angle θ, just as in figure 4.2.

The particular experiment that done using the microwave optics kit involved measuring
the diffraction off of the (100) plane shown in figure 6.4.

Figure 6.4: Several possi-
ble Bragg planes for a cubic
crystal. Picture from [10].
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Figure 6.5: The inten-
sity as a function of scat-
tering angle off of the
(100) plane shown in fig-
ure 6.4.

Figure 6.5 shows a plot of the diffraction data that was collected using the experiment.
There is reason to believe that all of the data for θ below about 15 degrees should not
be believed because the intensity that is recorded is coming from microwaves which don’t
diffract at all but instead go directly through the crystal. For θ above about 15 degrees, we
see that there are three diffraction peaks at 18◦, 23◦, and 50◦.
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According to Pasco, the characteristic atomic spacing of this crystal is 3.8cm and the
wavelength microwaves are 2.85cm. From this, it follows that we should see diffraction
peaks at 22◦ and 49◦. The diffraction peak at 18◦ evidently came from diffraction off of a
different crystal. The other peaks are in good agreement with the theory.
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Chapter 7

Tips and Tricks

7.1 Calibration

The “Calibration” tab can be used to load diffraction data into the program. The tab
can be used to calibrate diffraction data to determine the experimental parameters that
characterize the experiment. The data can be loaded using the “Data File:” input. The
program recognizes “mar2300”, “mar3450”, “mccd”, and “tiff”, and “edf” data. Multiple
files can be loaded into the program by selecting multiple files with the file selector. The
sum image will be used.

This program characterizes a diffraction experiment according to the parameters:

• “xc:”, “yc:” - the x and y coordinates on the detector where the incoming x-ray beam
would have hit the detector were there no sample in the way (in pixels).

• “d:” - the distance from the sample to detector (in mm).

• “E:” - the energy of the incoming beam (in eV).

• “alpha:”, “beta:” 2 tilt parameters of the detector (in degrees).

• “R:” - the rotation of the detector around the center (in degrees).

• “pl:” - the pixel length of the image. The width of one pixel (in microns).

• “ph:” - The pixel height of the image. The height of one pixel (in microns).

Before calibrating an image, three things must be done. First, the calibration data must be
loaded. Second, a Q data file with the standard Q values for the sample must be loaded.
Third, an initial guess of the calibration parameters must be loaded. This can be done with
the “Parameters” inputs. A decent guess at the calibration parameters can sometimes be
found in the header of a diffraction file. These values can be loaded into the program using
the “Get From Header” button to. The “Do Fit” button will perform the calibration and
find a best guess at the real experimental parameters.
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The “Work in Lambda” selection in the “Calibration” menu can be used to switch the
program to work with the x-ray’s wavelength instead of its energy. The relationship between
these values is E = hc/λ. The calibration parameter “E:” will be replaced with “λ:” and
the current value will be converted.

The “Q Data:” input can be used to load in standard Q data files. This program
stores several standard Q files. The can be selected through the “Standard Q” menu in the
“Calibration” menu.

The calibration fit can be modified in a couple of ways. The calibration algorithm will
look the diffraction data to find diffraction peak. It does so by running from the center of
the image out. The number of peaks that the program tries to find can be set with the
“Number of Chi?” input. This tells the program how many of these radial slices from the
center of the image should be done. The “Stddev?” input tells the program what ratio
higher the peak must be then the standard deviation of the background near the peak in
order for the peak to be considered real. The higher the value, the more picky the program
is about finding legitimate peaks.

If some of the experimental parmaetesr are known exactly, pushing the “Fixed?” check
box will fix the associated variable so that it will be not refined when fitting. The pixel
length and pixel height can never be refined so this does not apply for them.

To see how good the current calibration parameters are at characterizing the loaded data,
the “Draw Q Lines?” check box can be used to make the program draw on the diffraction
image lines of constant Q specified by the Q data file. The ∆Q ranges specified in the Q file
can also be drawn using the “Draw dQ Lines?” check box. The “Draw Peaks?” check box
can be used to display on top of the diffraction image all of the peaks that were found while
doing the fit.

The diffraction image can be zoomed into by left clicking in the image, dragging the
mouse, and then releasing. The image can be zoomed out of by right clicking on the image.
The image can be panned across by shift clicking on the image and dragging. The image
can be made bigger or smaller by resizing the window.

In the file menu, the “Save Image” option can be used to save the current diffraction file
in several popular image formats. The image will be saved with the current zoom level and
any Q lines, ∆Q lines, peaks, or masks drawn on top of it.

7.2 Masking

The program can ignore certain pixels in an image when performing diffraction analysis.
This is done on the “Masking” tab. Threshold masking can be used to ignore pixels above
or below a certain value.

All pixels larger than a certain value can be ignored by checking the “Do Greater Than

Mask?” check box and specifying the value in the “(Pixels Can’t Be) Greater Than

Mask:” input. All pixels less than a certain value can be ignored by checking the “Do Less

Than Mask?” check box and specifying the value in the “(Pixels Can’t Be) Less Than

Mask:” input. The overloaded or underloaded pixels will show up as a different color on the
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diffraction and cake displays. That color can be specified by the color inputs next to the
check boxes. When a threshold mask is applied, masked pixels will not be used during an
intensity integration.

The program can mask certain areas of the diffraction image using polygon masks. The
“Do Polygon Mask?” check box will enable polygon masking. Any masks in the program
will be displayed over the diffraction data and cake data. Any masked pixels will not be
used during an intensity integration. The “Add Polygon” button can be used to draw new
polygon masks. To draw a mask, simply push the button, then left click all the nodes on
the diffraction image except the last one, and finally right click the final node. This will
create the polygon. The “Remove Polygon” button can be used to remove polygons from
the diffraction image. Simply push the button, then click on the polygon that should be
removed. The “Clear Mask” button will remove all the polygons form the program. The
“Save Mask” button will save all the polygons in the program to a file. The “Load Mask”
button will load into the program all of the polygons in a file.

7.3 Caking

A caked image is a plot of diffraction data in Q vs χ space. χ is a measure of the angle
around the incoming x-ray beam. By convention, χ is equal to 0 degrees to the right of
the center of the image. It increases in a counterclockwise direction. The program needs to
know a range and bin size in Q and χ in order make a caked plot. the “Do Cake” button
will create a caked plot of the data. The program will present a new window with the caked
data in it. The caked window can be interacted with just like the diffraction window. Any
Q lines, ∆Q lines, and peaks that are drawn on top of the diffraction image will also be
displayed on top of the cake image. The Q and ∆Q lines are just vertical lines on the caked
image. The “Save Data” button will save a caked plot as plain text. The “Save Image”
button will save the caked plot as a popular image format. The image will have any Q lines
or peaks saved drawn on the caked plot saved on top of it.

The “Do Polarization Correction?” button will apply a polarization correction to
the caked plot. The polarization of the incoming beam can be specified with the “P?” input.
The formula for calculating the polarization correction is

I = Im/PF (7.1)

PF = P (1 − (sin(2θ) sin(χ− 90))2) + (1 − P )(1 − (sin(2θ) cos(χ− 90))2) (7.2)

with Im the measured intensity.

There is a convenient button called “AutoCake” which automatically picks the smallest
cake range so that the whole image shows up in the cake. It then pick the bin size so that
each pixel displayed on the screen is a single bin. It then caked the data. This button can
be used to quickly make a good cake.
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7.4 Integrate

An intensity integration is a plot of average intensity vs Q, χ, or 2θ. By default, the option
is to integrate in Q or χ. The “Work in 2theta” select in the file menu can be used make
the program integrate in 2θ instead of Q.

The program needs to know a range (both a lower and upper value) and a bin size in
order to perform an intensity integration. When these values are loaded, the “Integrate”
button will perform an integration. A new window will open up with the data in it. By
default, the integration will be over all possible values of the other variable. For example,
if you integrate in Q, it will be over all χ. This can be changed using the constraint check
boxes.

For example, selecting the “Constraint With Range on Right?” check box and setting
the “Chi Lower?” input to 0 and the “Chi Upper?” into to 90 will cause the integration in
Q to be only of pixel values with χ values between 0 and 90.

Just like a caked plot, a polarization can be applied during an intensity integration. The
“Save Data” button can be used to save out the intensity integration data as two column
ASCII.

7.5 Macro

Macros can often be used to greatly speed up the data analysis. The “Start Record Macro”
option in the “Macro” menu will begin recording a macro. After the desired tasks have been
recorded, the “Stop Record Macro” option will stop the recording and save the commands
to a file. The “Run Saved Macro” option will run a macro file.

Small edits to a macro file can make them much more versatile. Most macro commands
are just the name of the GUI item possibly followed by whatever the GUI would want (such
as a filename or a number). The macro command to load a diffraction file is “Data File:”.
It must be followed by a line with a filename. It can also be followed by a list of filenames, a
directory containing diffraction data, or some combination of each. The program will run the
subsequent macro lines on every file in the list and all diffraction files found in any folders in
the list. The loop will end with a subsequent “Data File:” command, a “END LOOP” line,
or the end of the macro file.

When lopping over diffraction files, there is special markup which makes it easy to save
files in a loop to useful places with useful names. They are “BASENAME” and “FILENAME”.
Whenever the program finds “BASENAME” in a macro file, it will be replaced with the path
of the current diffraction file that has been loaded. “FILENAME” will be replaced with the
filename of the current diffraction file. You could recreate a diffraction file (if’s extension was
mar3450) with the macro command “PATHNAME/FILENAME.mar3450”. An exmaple of these
keywords being used would be the macro line “Save Integration Data” followed by the
line “PATHNAME/FILENAME int.dat”. The macro would always save the intensity integrated
data right next to the diffraction file with a name similar to the diffraction file.
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Chapter 8

An Example

This section will present a pedagogically interesting example which demonstrates several of
the programs important features. The purpose of this chapter is neither to be comprehensive
nor to be particularly detailed. It will instead give a sense of the type of analysis that can
be done with this program. It will motivate the rest of the manual. further details and
information on any of the things described below can be found in the appropriate sections
of the manual.

David, a user of the program, was studying iron thin films using powder diffraction. He
was particularly interested in measuring the shifts in diffraction peaks of a sample. To realize
this experimentally, he capture the image of the standard calibration crystal Lanthanum
Hexaboride (LaB6). Without changing the experimental parameters, he then imaged many
samples for which he wanted to measure the shift.

The steps that are needed to do this analysis will be described. First, we will calibrate
the diffraction detector. This is to say that we want to determine the precise experimental
parameters that characterized the diffraction machine when the images were captured (for
example, the distance between sample and detector, the energy of the x-rays, etc). Since
the image of the standard calibration crystal was taken at the same time as the images of
interest, the calibration parameters inferred from the standard crystal can be used to analyze
the rest of data.

To perform this calibration, we first opened up the Area Diffraction Machine. Figure 8.1
shows what we are first presented with.

From the “Data File” input, we load into the program the LaB6 file. Once the file is
loaded in, a new window opens up which shows the diffraction data. This window is shown
in figure 8.2.

To do the detector calibration, the program must know the Q values associated with the
standard crystal. Since LaB6 is so common, it is a preset default in the program. We go
into the menu bar, into the “calibration” menu, into the “Standard Q” menu, and then
selected Lanthanum Hexaboride. This is shown in figure 8.3.

(More standard Q files might be added in the future). In order to perform image cal-
ibration, the program finally needs to know an initial guess at the calibration parameters.
Although one could enter these parameters by hand, often times decent guesses at the ex-
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Figure 8.1: The cali-
bration tab.
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Figure 8.2: The
diffraction data
window.

Figure 8.3: Loading
a standard Q file.
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perimental parameters are stored in the header data inside of the diffraction image. The
program can try to find these header calibration values and put them into the inputs in the
program. To do this, we could pushed the “Get From Header” button. With the image, the
Q values, and an initial guess in the program, we are ready to do the calibration.

But first, we want to examine how good the initial guess is. To do so, we can select the
“Draw Q Lines?” check box on the Calibration tab. When this is selected, the program
will draw on top of the diffraction image red lines corresponding to what diffraction pat-
tern should show up on the detector (for the given calibration parameters and Q values).
Figure 8.4 shows what the program displays for our example.

Figure 8.4: The diffraction im-
age with constant the Q lines dis-
played upon it. These lines are
calculated for the calibraiton pa-
rametesr found in the header of
the image. They are not partic-
uarly accurate.

Of course, our initial guess isn’t great so the red lines don’t match too well with the
loaded patter. The data will look like

We can do a cake of the data. A caked plot is a presentation of the data in a different
parameter space. The x axis is Q and the y axis is χ. Ideally, if the calibration parameters
are known exactly, the caked data will show up as many vertical lines. We can cake the data
by going to the cake tab. This tab is shown in figure 8.5.

On this tab, we have to pushing the “AutoCake”. When we do so, a new cake window
opens up. Figure 8.6 shows what the program displays for our example.

We see that for The caked data with the initial guess calibration parameters, our diffrac-
tion lines have a systematic wiggle. It might be hard to see with the full image, but by
zooming into just one line we find the difference to be much more obvious. A zoomed in
range is shown in figure 8.7.

This means that our initial guess at calibration parameters is not great. We can now do
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Figure 8.5: The cali-
bration tab.
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Figure 8.6: A caked plot done
with the calibration parameters
found in the header of the im-
age. The header parameters are
not particuarly obvious and the
diffraciton peaks are not partic-
uarly straight. Calibratin helps
improve the strightness of the
diffraciton peaks.

Figure 8.7: A zoom in of the cake
shown in figure 8.6. When zoomed
into diffraction image, the poor
calibration becomes much more
obvious.
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the calibration. To do so, we push the “Do Fit” button on the “Calibration” tab. If the
calibraiton did a good job, the constant Q lines drawn on the diffraction image move so that
they are entirely over the diffraction pattern. This is shown in figure 8.8.

Figure 8.8: The diffraction win-
dow after being calibrated. The
constant Q lines fall well on top
of the diffraction peaks.

The diffraction peaks on the caked image become much straigher. The caked window
after calibraiton is shown in figure 8.9.

They look good even when zoomed in. A corresponding zoom in of the caked window in
shown in figure 8.10.

After caking the calibrated data and convincing ourselves that our calibration parameters
are good, we can save the calibration parameters to a file for later use. We can do so
using the “Save to File” button on the “Calibration” tab. After selecting the location
“C:/Data/LaB6 cal.dat”, the calibration file gets saved as

Listing 8.1: ’The Calibration Parameters File’

1 xc 1722.966078 0

2 yc 1724.227970 0

3 D 122.691351 0

4 E 12707.219316 0

5 alpha -0.052910 0

6 beta 0.130553 0

7 rotation -41.523477 0

8 pixelLength 100.000000

9 pixelHeight 100.000000
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Figure 8.9: The cake window af-
ter calibration. The lines are
much straigher then the lines in
figure 8.6 before calibration.

Figure 8.10: A zoomed in part of
figure 8.9. Even at a large zoom
in, the line remains very straight.
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Figure 8.11: The
pixel masking tab.
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As can be seen in figure 8.2, there is a beam stop on the left side of the image which is
obstrucing part of the image. We know that none of the pixels blocked by the beam stop
contain any interesting information so we are going to want to tell the program to ignore
any pixels blocked by the mask. We can do so with a polygon mask. All polygon masking
is done on the “masking” tab. A screenshot of this tab is shown in figure 8.11. We want to
add a rectangular polygon mask on top of the beam stop in the image. To do so, we push
the “Add Mask” button. We then move to the diffraction image and draw the beamstop on
the image by left clicking nodes on the screen. We add the final node by right clicking. After
having drawn the polygon mask, our diffraction image is shown in figure 8.12.

Figure 8.12: Here is the same diffraction
data as in figure 8.2 but with a polygon
mask drawn over the beam stop. This
polygon mask will stop the beam stop
below it from being used in subsequent
data analysis.

Once we decide we are happy with our polygon mask, we can save it to a file using the
“Save Mask” button. The file gets saved out as

Listing 8.2: ’beam stop mask.dat’

1 # Polygon(s) drawn on Mon Apr 14 00:33:12 2008

2 25.6749379653 1634.63771712

3 42.7915632754 1814.36228288

4 1959.85359801 1857.15384615

5 1959.85359801 1626.07940447

We can then load in this mask when we do the rest of our analysis. The mask will make
sure that none of the the pixels within the beam stop are used for any subsequent analysis.

Now, we are going to want to perform an intensity integration of the rest of our data.
We can use the intensity integrate data to look for peaks in the data. The steps for doing
the rest of this analysis are as follows. Load in particular file we are interested in. Load
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in these calibration parameters using the “Load From File” button on the “Calibration”
tab.1. Next, we can load in our previously recorded beam stop mask using the “Load Mask”
button on the “Masking” tab. We also have to make sure polygon masks are used in the
analysis by making sure the “Do Polygon Mask?” check box is selected. With everything
loaded into the program, we can perform a Q integration by going to the “Integrate” tab.
The integration tab is shown in figure 8.13

Figure 8.13: The in-
tegration tab.

We set the range of the Q integration by setting “Q Lower?” to 0 and “Q Upper?” to
5. We then set the precision of the integration, or the bin size, by setting the “Number of

Q?” input to 300. Finally, we push the left “Integrate” button and a window showing the
diffraction data opens. For a particular iron sample, this window is shown in figure 8.14.

We can save this data to a file with the “Save Data” button on the “Integration” tab.
This data is saved out as two column ASCII. After doing this for all the different files that we
have, we can load all the data into another program, such as Microsoft Excel, and compare
the peaks.

1If you just did the calibration, the parameters should already be in the inputs. The point is just that
you could load the parameters into the program if you were, say, to open the program at some later point
in time.
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Figure 8.14: The inten-
sity integration window
for a particular iron
sample.

But if there are a lot of files to analyze, this whole process can be very time consuming.
Instead of doing this analysis by hand, we can automate the process by writing a macro to
analyze all the files one at a time. First, we put all of our data into “C:/Data/”. The macro
that we can run is

Listing 8.3: ’A macro to automate the analysis’

1 Data File:

2 C:/Data/

3 Load From File

4 C:/Data/LaB6_cal .dat

5 Load Mask

6 C:/Data/beam_stop_mask.dat

7 Do Polygon Mask?

8 Select

9 Integrate Q Lower?

10 0

11 Integrate Q Upper?

12 5

13 Integrate Number of Q?

14 300

15 Integrate Q-I

16 Save Integration Data

17 PATHNAME/FILENAME_int.dat

The first command loads into the program all of the diffraction files in the folder “C:/Data/”
one at a time and runs the rest of the analysis on that particular file. The program then
loads in the calibration file that we saved earlier and sets the integration bounds. Then the
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progarm loads in the beam stop mask. Then, the program does a Q vs intensity integration
and saves the intensity integrated data to a file. The PATHNAME keyword gets repalced
with teh path leading up to the particular file and the FILENAME keyword gets replaced
with the particular file’s name. For example, the file “FeL2 d070.mar3450” in the folder
“C:/Data/” would be replaced with “C:/Data/FeL2 d070 int.dat” This command will let
us save out of our intesnity integrated data next to the corresponding diffraction file with a
useful filename.

After we run this macro, all of our data will be saved out into text files. We can, for
example, open the files in Excel and plot the different diffraction patterns on the same
graph. If we did this, we would obtain a plot that looked something like the graph shown in
figure 8.15.

Figure 8.15: An example of what the shift
in peaks might look like when two diffrac-
tion patterns were plotted in Excel on top
of one another.
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Chapter 9

Viewing Diffraction Data

Figure 9.1: The cali-
bration tab. This is
what you see when
you first open the
program. This tab
allows you to load
diffraction data into
the program.

When you first opep the Area Diffraction Machine, you will see the calibration tab. It
is shown in figure 9.1. The first thing you will probably want to do is load diffraction data
into the program. This can be done with the “Data File:” input either by typin in the
filename by hand and pushing the load button or clicking on the folder icon and using a file
selector. After the file is loaded, a diffraction data window will open. This window is shown
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in figure 9.2.

Figure 9.2: The diffraction
data window. This win-
dow will open after a file is
loaded. This windows al-
lows you to interact with
diffraction data.

You can use the diffraction data window to interact with your diffraction data. you can:

• Zoom into the data – left click on the data and hold down on the mouse. When the
mouse is moved around, the program will create a resizing square. When the mouse is
released, the program will zoom into the selected range.

• Zoom out of the data – right click on the data.

• Pan across the data – hold shift, push down either mouse button, and then move the
mouse around and the image will move with it. Let go of the mouse to stop panning.

• Resize the window – click on the bottom right corner of the window and drag. The
window will reszie just like any other window and the data will become larger or
smaller.

• Read coordinates for a selected point – when mousing over the image, the x, y, Q, χ,
and I values for that pixel will be displayed at the bottom of the window. Q and χ will
only be dipslayed if valid calibration data is loaded into the program. See chapter 11.

• Change the Color Map – the “Colormaps” selector can be used to change the particular
color map used to display the data.
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• Invert the Color Map – The “Invert?” checkbox can can be used to invert the colors
of the color map.

• Low & Hi Pixels – The sliders to the right of the image can be used to change the
intensity scaling of the image. The low value corresponds to the intenisty value that
will be maped to the lowest part of the color map and the hi value corresonds to the
intensity value that will be mapped to the highest part of the color map. 1 This feature
is useful because it can help make visible certain intensity ranges in the image.

• Log Scaling - By default, intensity values are linearly mapped to colors in the color map.
The “Log Scale?” checkbox can be selected to instead apply a log scale mapping of
the intensity values to the color map.

9.1 File Formats

The program can load in Mar data: “.mar2300”, “.mar3450”, and the “.mccd” Mar CCD
format. It can load in standard “.tiff” data. It can load in the ESRF Data Format “.edf”.
The program can only display square data. Whenever non-square data is loaded into the
program, the program will simply pad out the image until it is a square with pixels who’s
intensity is 0.

9.2 Loading Multiple Images

Using the same file input, you can load multiple files into the program at the same time. If
multiple files are put in the “Data File:” text input and separated by spaces, they will all
be loaded in. Alternately, the diffraction data file selector can be used to select multiple files
at the same time. All of the selected files will be loaded. When several files are loaded at
the same time, the program will add the intensities of the images pixel by pixel and work
with the combined image. This can be useful for analyzing several images taken of the same
sample. The program can only add together files of the same format.

9.3 Saving the Diffraction Image

You can save diffraction data in the program as a popular image format. The data can
be saved by doing to the “File” menu bar and selecting the “Save Image” option. The
formats currently allowed are “jpg”, “gif”, “eps”, “pdf”, “bmp”, “png”, “tiff”, and the
ESRF data format “edf”.

Images saved as a popular image format will be saved with whatever threshold masks,
polygon masks, Q lines, ∆Q lines, and peaks are currently displayed over the data in the

1Technically, what is set is the percentage of the most intense pixel in the image should be mapped to
the lowest or highest value in the color map.
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diffraction data window. And it will be saved at whatever the current zoom level is.2 See
chapter 11 for a discussion of the Q lines, ∆Q lines, and peaks. See chapter 12 for a discussion
of threshold masks and polygon masks.

Because the program will pad any non-square data when it is loaded to. The program
will always save out all images as squares. If this is undesirable, the saved images will need
to be cropped using another program.

2This is not the case with ESRF data. When an image is saved as an ESRF file, it will be saved un-zoomed
with none of the lines or masks on top of it.
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Chapter 10

Detector Geometries

Detector

Crystal

Figure 10.1: An X-Ray diffraction
setup. X-rays scatter from a 3-D sam-
ple and are captured by a 2-D de-
tector. In this setup, the detector is
perpendicular to the incoming x-ray
beam.

X-ray diffraction can be models as in figure 10.1. Cones of light leave the crystal at
particular angles to the incoming beam. These cones of light are captured by a detector. By
convention, the scattering angle of the x-rays measured with respect to the incoming beam is
called 2θ. Usually, the interesting thing to measure by doing x-ray diffraction is the scattering
angles of these cones of light. If we placed a detector perpendicular to the incoming beam,
the cones of light would be detected as circles of high intensity. If we knew the distance from
the sample to the detector and the distance from the center of the detector to a particular
ring (or really any point on the detector), we could easily calculate the scattering angle of
the light. If the distance from the crystal to the detector is d and the distance from the
center of the detector to our particular point on the detector is r, then the scattering angle
is

tan 2θ =
r

d
. (10.1)

This is shown in figure 10.2. life is not always so simple. The detector is never exactly
perpendicular to the incoming beam. In practice, the detector will always be slightly offset
with respect to the incoming beam. Failing to account for this would introduce a systematic
error in a measurement of scattering angles.
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Figure 10.2: The same setup as in fig-
ure 10.1. We are now interested in
some particular point on the detector.
2θ is the scattering angle of the light
that gets to this point, d is the dis-
tance from the crystal to the detector,
and r is the distance from the center of
the detector to some particular point
(which 2θ is associated with). By cen-
ter of the detector, we mean the point
on the detector where the beam would
hit if did not interact with the crystal.

d

r
2θ

There is a need to analyze diffraction data on detectors that are not perpendicular to the
incomming x-rays. We will present a theory of tilted detectors first developed by Abhik Ku-
mar in [5]. Our derivation will result in different formulas because of a different assumption
about how the detector is tilted.

What we are interested in is mathematically describing position coordinates on a tilted
detector by relating them to more theoretically motivated quantities such as the scattering
angles that would lead to a beam hitting that particular point on the detector. In order to
do this, we must first work out the transformation of points on a tilted detector to points
on an untilted detector. This is to say that we want to figure out where on an untilted
detector the beam would have hit were it to hit that untilted detector instead of the tilted
detector. The point on the titled detector can be though of as the shadow of the point on
the untitled detector. We will call the point on the untilted detector as measured on the
untilted detector (x, y) and the corresponding point on the tilted detector as measured on
the tilted detector as (x′′′, y′′′). The reason for three primes will become obvious shortly.
This is shown schematically in figure 10.3. Another way to think about this problem is to
imagine putting your head at the sample and then looking directly at some point (x′′′, y′′′)
on the real tilted detector. What we want to figure out is some corresponding point (x, y)
on an imagined untilted detector which would appear to eye to be in the same direction.

Figure 10.3: Here, the detector is titled by
some arbitrary angle with respect to the in-
coming beam. We will call some arbitrary
point on the tilted detector (x′′′, y′′′). We
are interested in relating this point to the
point (x, y) on some imagined untilted de-
tector where a scattered beam would have
hit were that tilted detector in place instead
of the tilted detector.

(x, y)

(x′′′, y′′′)

r r′′′
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10.1 The Three Tilt Angels

In order to relate these points, we need to find a way to describe some arbitrary tilt. To
do so, we will characterize a detector tilt in terms of 3 independent detector rotations. We
will use two orthogonal rotations about the x and y axis followed by one rotation about the
center of the detector. These three angles are shown in figure 10.4. We can solve our original
problem much easier if we deal with each rotation separately.

β
ŷ

(a) The tilt angle β. This
angle characterizes a rota-
tion around the ŷ axis.

α

x̂′

(b) The tilt angle α. This angle
characterizes a rotation around the
x̂′ axis. What exactly x̂′ is will be
described shortly

R

ŷ′′

x̂′′

(c) The rotation angle R. This is a
rotation about a vector normal to x̂′′

and ŷ′′. What exactly x̂′′ and ŷ′′ are
will be described shortly.

Figure 10.4: Any detector tilt can be characterized as a rotation by β followed by a rotation
by α followed by a rotation around the center of the image by R.

10.2 The β Tilt

We will first apply a rotation around ŷ by angle β. To do this, we will first consider a
point (x, y) on an untilted detector and project it onto some point (x′, y′) on this rotated
detector. This is to say that we will figure out where on the detector rotated by angle β a
beam would hit were it to hit the tilted detector instead of the untilted detector. A diagram
of this is shown in figure 10.5. We can use the geometry of these diagrams to figure out the
relationships between the coordinates. Using the property of similar triangles, we see that

x

d
=

x′ cosβ

d+ x′ sin β
. (10.2)
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β

ŷ

x̂

(x, y)

(x′, y′)

x′

y′

(a)

x

x′

x′ cosβ
x′ sin β

d

y y′

β

a

b

(b)

Figure 10.5: A diagram of the situation depicted in figure 10.3 where only the β rotation
about ŷ has been applied.

From this it follows that

x =
dx′ cosβ

d+ x′ sin β
. (10.3)

Using similar triangles again, we see that

y

a
=

y′

a + b
(10.4)

d

a
=

d+ x′ sin β

a+ b
. (10.5)

from which it follows that

y =
dy′

d+ x′ sin β
. (10.6)

So, equation 10.3 and 10.6 give us the proper geometrical equations for relating a point on
the untilted plane (x, y) to the corresponding point (x′, y′) on the first plane.

10.3 The α Roll

We can now take this point (x′, y′) on the tilted plane and project it onto another plane
which has been tilted by β about ŷ and a rolled by α around x̂′. To do so, we take the
plane which is rotated by an angle β around ŷ and then rotate it around the line x′. This is
diagrammed in figure 10.6. A more geometric diagram can be seen in figure 10.7 and a cross
section of the y = 0 plane can be seen in figure 10.8.

We can use these figures to determine the equations that we need. We see from figure 10.8
that f = y′′ sinα cosβ. From figure 10.7, we see that h = y′′ cosα. Using the property of
similar triangles, we see that

y

a
=

y′′ cosα

a+ b+ c
(10.7)
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β

(x′, y′)
(x′′, y′′)

e
α

α

ŷ

x̂

x̂′

x′′

y′′

Figure 10.6: A diagram of a plane
that has been tilted about the ŷ axis
by angle β and then about x̂′ by angle
α.

x

x′′

x′′ sin β

d

y

β

a

b

α

α(x, y)
(x′, y′)

(x′′, y′′)

h

e

l

y′′
y′

f

c

Figure 10.7: Here is a more geomet-
rical diagram of the figure shown in
figure 10.6.

c

b

a x

d x′′ sin β

l

f

x′′

e
y′′ sinα

β

β g

x′′ cos β

Figure 10.8: Here is a cross sec-
tion of the y = 0 plane of the fig-
ure shown in figure 10.6.
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Using similar triangles again, we see that

d

a
=
d+ x′′ sin β + f

a+ b+ c
(10.8)

From which we can deduce that

y =
dy′′ cosα

d+ x′′ sin β + y′′ sinα cosβ
. (10.9)

Figure 10.8 shows that g = y′′ sinα sin β and that x′′ cosα = l + g. Using similar triangles
again, we see that

x

d
=

l

d+ x′′ sin β + y′′ sinα cosβ
(10.10)

Plugging in and simplifying, we get

x =
d(x′′ cosβ − y′′ sinα)

d+ x′′ sin β + y′′ sinα cosβ
. (10.11)

10.4 The R Rotation

Figure 10.9: Here, we take a
point on a plane rotated by angle
β about ŷ and by angle α about
x̂′. We then rotated this point
about a line normal to the plane
going through the origin by angle
R. Rotating the point is equiva-
lent to rotating the plane.

ŷ′′

x̂′′

(x′′′, y′′′)

(x′′, y′′)

R

We have to deal with the final rotation. We will rotate the coordinate (x′′, y′′) on the
previous detector about a line perpendicular to the plane that goes through the center of the
detector. We will call this final point (x′′′, y′′′). This is shown schematically in figure 10.9.
The equation for this rotation is

x′′ = x′′′ cosR + y′′′ cosR (10.12)

y′′ = y′′′ cosR− x′′′ cosR (10.13)

Applying equation 10.12 onto equation 10.11 and 10.9 give us the relationship that we wanted
all along.
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10.5 Relationship to Pixel Coordinates

(x′′′, y′′′) is suppose to represent what we actually measure on a real detector. Unfortunately,
things are not quite so easy. We do not actually measure these values. The whole formalism
assumes that we are measuring distances from the point on the detector where the beam
would hit were it not to be diffracted. Unfortunately, it is not at all clear what this point
is. A discussion of how to find this center center will be given in section 11, but for now lets
simply state that there is some point on the detector that is the center and call it (xc, yc) We
are interested in some other pixel reading on the detector which corresponds to the point
(x′′′, y′′′). Lets call it (xd, yd). There is some material property of the detector describing the
distance between each pixel (e.g. 1000mm/pixel). We will call this width ps. We can relate
these quantities using:

x′′′ = (xd − xc) × ps y′′′ = (yd − yc) × ps (10.14)

This means that, in terms of (xc, yc) and ps, we can relate (x, y) and (xd, yd) which are
directly measurable experimental quantities.

10.6 Inverting the Equations

We can invert these formula to learn what x′′ and y′′ are in terms of x and y. We have:

x′′ =
dx

d cosβ − x sin β − cosβ(x cosβ + d)/(x
y

cotα+ 1)
(10.15)

and

y′′ =
dx cosβ/(x

y
cosα + sinα)

d cosβ − x sin β − cosβ(x cosβ + d)/(x
y
cotα + 1)

. (10.16)

10.7 Q, 2θ, and χ

We now have a way of relating (x′′′, y′′′), a point on a detector with a pitch β, tilt α, and a
roll R applied to it, to a point on an untilted detector (x, y) where a beam of light would have
intersected were it not to hit the tilted detector. With this relationship, we can now relate
these quantities to theoretically motivated quantities. In particular, the angle of scattering
of a beam is by convention called 2θ and a quantity measuring the scattering angle around
the incoming beam is called χ. These quantities are shown in figure 10.10. We can see that
the relationship between (x, y) and 2θ and χ is

tan 2θ =
r

d
=

√

x2 + y2

d
(10.17)

and
tanχ =

y

x
(10.18)
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Figure 10.10: For a particular point (x, y),
we always associate two quantities: 2θ and
χ. 2θ is the angle of scattering of the
beam, or the angle that an incoming beam
is deflected by when it diffracts off the
crystal. χ is a measure of the azimuthal
angle around the beam. It tells you in
what direction radially outwards (with re-
spect to the undeflected beam) the outgo-
ing beam was was scattered.

(x,y)

2θ

rχ

The quantity Q is often used instead of 2θ. they are related by

Q = 4π sin(2θ/2)/λ (10.19)

The reason for using Q instead of 2θ is because diffraction theory shows that the Q values
of preferential scattering of a crystal is a material property independent of the experimental
setup (such as d and λ).

Alternately, energy could be used in this formula. To do so, energy can be related to
wavelength using the De Broglie’s formula

E = hc/λ (10.20)

Finally, sometimes people use the quantity D instead. D is related to Q by

D = 2π/Q (10.21)

Using equation 10.14, we now have a way of relating pixel coordinates (xd, yd) read directly
off of a detector to the theoretically motivated coordinates (Q,χ). In order to do this
conversion, we must use the values xc, yc, ps, d, λ, α, β, and R. A discussion of how these
values can be determined so that this transformation can in practice be done will be given
in section 11
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Chapter 11

Calibration

One of the most common types of analysis of diffraction data is to perform an intensity
integration in Q. This will create a plot of average intensity as a function of Q. Since pow-
der diffraction procedures cones of light, this means that the intensity should be uniformly
large for some Q values and uniformly low for others, leading to Q values where the intensity
sharply peaks. The Q values that lead to these peaks can be used to learn structural informa-
tion about the crystals that are being diffracted. So in principle, using the transformations
just described, it should be easy to convert all of the pixel coordinates (xd, yd) into Q values
and then plot average intensity as a function of Q. The only problem we would face is that
in order to do the transformation, we would need to know the values of the the parameters
that characterize an experiment. These are xc, yc, d, λ, α, β, and R.1 Calibration then is
the process used to find what we will now call the calibration values.

11.1 The Calibration Algorithm

Although in principle all the calibration values could be experimentally measured, in practice
they can not be directly measured to an acceptable level of precision. Instead, a standard
calibration procedure is used to infer these values from real diffraction data. The trick to
doing this calibration is to image a standard while performing the diffraction analysis of
an unknown sample. Assuming that the diffraction machine was not changed between the
collection of the standard crystal and the diffraction of the unknown sample, the calibration
data corresponding to the two images will be the same. So, if we can figure out the calibration
values of the standard crystal, we can use these values when analyzing the unknown crystal.
This is exactly what is done in practice.

What it means to use a standard crystal is to know the particular Q values for which
the crystal preferentially scatters light. With this information, and the calibration values for
some particular experiment, we could in principle figure out exactly what diffraction pattern
we should find. This do this, we could, for each Q value, vary χ and calculate the (xd, yd)

1The pixel scale ps is usually know in advance as a uniform property of the detector being used.
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coordinate corresponding to that (Q,χ) pair. After using enough χ values, we would be able
to fill in the rings as they would show up on the detector.

In fact, my program can do just this. If you load in a set of Q values (see section
11.13) and then put into the program some calibration values, and then push the “Draw Q

Values?” check box, you can then see what the particular diffraction image would have
shown up on the detector. This is described thoroughly in section 11.7

Being able to do this still leaves us with a hard problem to solve. For particular calibration
values, we can easily calculate what the diffraction pattern should look like. But what we
really know is what the calibration values are for the known diffraction pattern of a standard
crystal. In order to perform the real calibration, then, we can vary the calibration values
until they make the pattern that can be calculated to show up to match the pattern that
was actually captured. The process of image calibration then is a procedure to ‘fit’ the
calibration values to a diffraction patter with known Q values.

11.2 The Fitting

In order for the fitting algorithm to work, the program must already have an initial guess
of the real calibration parameters. This initial guess does not have to be perfect, but it
should be somewhat close. The algorithm them requires a list of the known Q values. And
it additionally requires a range for each of these Q values. In order for the algorithm to
work properly, inside of this Q range (as calculated by the initial calibration value guess)
there should be the peaks that we are interested in and no spurious other peaks that would
confuse the computer.

With the Q values specified along with Q ranges, we can divided up any diffraction image
several regions, where within each region we know there is a unique peak. An example of
this is shown in figure 11.1.

Our algorithm first requires finding (x, y) coordinates of many diffraction peaks. To do
so, the algorithm will pick some χ value and then spread radially out from the center of the
diffraction image in this χ direction.2. Between the given Q range (for each of the Q ranges),
the program stores an array of all the data point on the line. It then fits a Gaussian to the
data and the (x, y) coordinate of the center of this Gaussian (x, y) is taken to be the peak.
A diagram showing this algorithm is shown in figure 11.2. This method is then done for
many different evenly spaced χ values and the particular value can be selected by the user
for increased accuracy.

The only really tricky part about this step is that there is not always a consistent diffrac-
tion ring around the image and therefore some of these fits should not find peaks. Whenever
this occurs, the program just ignores the current fit and moves to the next. But figuring out
when some particular peak is bad is not particularly obvious. The method that this program
uses is to ensure each peak passes a few tests. The first test is that the fit peak was too
close to the edge of the image. So any peak where the Gaussian fit’s center plus or minus

2Remember that the center is specified by the initial calibration values

92



Figure 11.1: A division
of a diffraction image
into Q ranges where
each diffraction peak
falls uniquely inside one
Q range.

Constant χ Slice

Q2 + ∆Q2
Q2

Q2 − ∆Q2

Q1 + ∆Q1
Q1

Q1 − ∆Q1

Figure 11.2: Here is a dia-
gram of the peak finding al-
gorithm. The solid circular
black lines represent diffrac-
tion peaks on the image. The
dotted lines represent the Q
ranges used to find the peaks.
The diffraction peaks are en-
tirely within the ranges. Fi-
nally, the radial line repre-
sents the program picking a
particular χ value and look-
ing for peaks inside of the Q
ranges. Finally, the Gaussian
peaks represent the program
fitting a gausian to the inten-
sity profile inside of each of
the ranges.
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twice the fit’s standard deviation gets outside of the Q range is considered too close to the
edge of the image. The next test that is done is to calculate is the standard deviation of the
data outside of the peak is significant when compared to the height of the peak fit. To do
this, the code calculates the standard deviation of all the pixels that are farther then twice
the peak’s fit standard deviation away from the center of the peak. If the height of the peak
divided by this calculated background standard deviation is smaller then some particular
value, the peak is considered bad. This value is called by the program “Stddev” and can be
specified by the user from user. Presumably, the higher that “Stddev” is, the more picky
the program is about what a good peak looks like. This isn’t the most robust method for
finding peaks, but it seems to work pretty well and it should be easy in principle to add new
tests to the algorithm.

After compiling a list of diffraction peaks in the image, the program can then define a
residual function which we can minimize to find the best fit calibration values. To do so,
we can convert the (x, y) coordinate of each of the peaks into a (Qpeak, χpeak) pair. For each
of these (x, y) coordinates, we also know what the input Q list says the experimental Q
value for this peak should be (which we will call Qexp). We can therefore define the residual
function as

Residual(xc, yc, d, λ, α, β, R) =
∑

x, y pairs

(Qpeak −Qexp)
2 (11.1)

The functional dependence comes from calculating Qpeak from a known (x, y) coordinate.
We see that the smaller the Residual is, the closer we have come to finding the real cali-
bration values which characterized the diffraction experiment. If we had perfect calibration
parameters, the residual should be equal to zero. But it is well defined for any calibration
parameters. So we can take this function of 7 variables and minimize it. The value of this
function at its minimized is the best guess calibration values. There are plenty of computer
algorithm that can minimize arbitrary multi-variable functions. The one that this code
uses is called the Levenberg-Marquardt nonlinear least squares algorithm and the particu-
lar implementation that is used to to perform the calibration is Manolis Lourakis’s levmar
library[6]. Ideally, once the minimization is done, a good guess at the calibration values is
found.

11.3 Calibrating With the Program

Diffraction image calibration is done with the calibration tab of the program. This tab is
shown in figure 9.1 on tab 79.

As described above, to calibrate an image you must have already loaded into the program
a diffraction data file, a Q data file for the particular sample that was taken, and an initial
guess at the calibration data.

Once you have done these three things, you can simply push the “Do Fit” button to
calibrate the diffraction data. The program will then perform the calibration algorithm as
described in section 11.1. Once the program finds a best guess for the new calibration values,
it will put those values into the inputs.
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While fitting the program will print to the console some useful things. Most interesting,
the program will calculate the residual function divided by the number of 11.1 and display
print the value to the terminal before and after the calibration is done3 The output will look
like

Listing 11.1: Displaying the Residual

1 - Before fitting , the calculated residual is 5.336138e-04

2 - Doing the fitting

3 - After fitting , the calculated residual is 6.532131e-06

The program will then display the reason why the fitting algorithm decided to quit doing
the fitting and decided that it found its best guess. For example, the program might print
out

Listing 11.2: Reason For Quitting

1 - Reason for quitting the fit: 2-stopped by small gradient J^T e

The different reasons are told to me by the levmar fitting algorithm. I am taking them di-
rectly from the levmar website http://www.ics.forth.gr/~lourakis/levmar/ That web-
site says that the different reasons why the fitting can stop are:

• stopped by small gradient J^T e

• stopped by small Dp

• stopped by itmax

• start from current p with increased \mu

• no further error reduction is possible. Restart with increased mu

• stopped by small ||e|| 2[6]

I think that the first reason to quit (stopped by smallw gradient) means that the program
found its way to the bottom of the hill and is convinced that it did its best job minimizing
the function. I think that (stopped by itmax) means that the program was forced to quit
by a hard coded limit to the number of loops through the fitting. So if you come across this
message, you should probably do the fit again with the current values. I honestly don’t know
enough about the levmar fitting algorithm to know what the other messages really mean. If
you need to know, you should go into the fitting algorithm’s documentation and see what
you can find out.

The fitting algorithm also provides a covariance matrix that it finds while fitting. I do now
know how it calculates this matrix or what it exactly what it means physically. Nevertheless,
I print it out after the fitting is done.

3Actually, the program calculates the residual function divided by the number of peaks. So it really
displays the residual per peak, which is a more useful quantity because it would not change if more peaks
were used in the fit
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Listing 11.3: Display of A Covariance Matrix

1 Covariance Matrix

2 [[ 9.43e-04 -1.53e-04 5.36e-05 3.27e-03 -1.77e-03 3.64e-03 2.10e+00]

3 [ -1.53e-04 1.17e-03 -1.40e-04 -8.58e-03 3.91e-05 -2.02e-04 -1.25e-01]

4 [ 5.36e-05 -1.40e-04 2.07e-04 1.38e-02 -1.45e-04 3.12e-04 1.78e-01]

5 [ 3.27e-03 -8.58e-03 1.38e-02 9.49e-01 -6.44e-03 1.40e-02 8.02e+00]

6 [ -1.77e-03 3.91e-05 -1.45e-04 -6.44e-03 4.01e-01 -8.42e-01 -4.76e+02]

7 [ 3.64e-03 -2.02e-04 3.12e-04 1.40e-02 -8.42e-01 1.77e+00 9.99e+02]

8 [ 2.10e+00 -1.25e-01 1.78e-01 8.02e+00 -4.76e+02 9.99e+02 5.65e+05]]

The rows (from top to bottom) correspond to “xc”, “yc”, “d” “E”, “alpha”, “beta”, and
“rotation”. The columns (from left to right) also correspond to “xc”, “yc”, “d” “E”,
“alpha”, “beta”, and “rotation”. I think that the square root of the diagonal elements
of the covariance matrix are supposed to correspond to uncertainties, but I do not know
enough about the minimization algorithm to be really comfortable saying that these are the
true uncertainties in the fit parameters. Your mileage my vary. Anyway, I print out the root
of the diagonals. The printout by the program

Listing 11.4: Display of the root of the diagonals

1 Root of the diagonal of the covariance matrix ...

2 xc: 0.0307145820046

3 yc: 0.0341970790239

4 d: 0.0143735880013

5 E: 0.97393322373

6 alpha: 0.633295666676

7 beta: 1.32940880588

8 rotation : 751.595873785

If you do not like the guess for the calibration parameters, you can always unto to the
previous calibration values before the fit using the “Previous Values” input.

11.4 The “Number of Chi?” and “Stddev?” Input

The calibration algorithm requires starting at the center and moving across the image in
constant χ slices (see section 11.1 or figure 11.2 for a graphical representation). The number
of these slices around the image that should be done is user selectable using the “Number Of

Chi?” input. The default value is 360. The more χ slices that are used, the slower the fit
will be.

Section 11.2 describes how the program uses a parameter to determine how picky it should
be in allowing peaks that it finds. Roughly, this parameter corresponds to how many times
larger the peak has to be then the background noise outside of the peak. This parameter
can be set using the “Stddev?” input. The default value is 5. The higher the value, the less
likely the program will be to find and use bad peaks but the more likely it will be to ignore
valid good peaks.
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11.5 Work in λ

Often times, one wishes to deal with the wavelength of the incoming beam of light instead
of the energy of the beam. Of course, the energy and wavelength are intemately related by
the formula

E = hc/λ (11.2)

If you wish to work with wavelength in units of nanometers instead of energy in units of
electron volts, you can change the state of the program so that the program works with
wavelength instead of energy. To do so, you have to go into the menu bar and change the
radio select from “Work in eV” to “Work in Lambda”. Once you do that, the calibration
parameter input will be labeled λ. Any number in that input will then be converted. After
the parameter is modified during a fit, the program will put the wavelength value into the
input. Finally, when the calibration parameters are saved to a file, the wavelength will saved
to the file instead of the energy.

11.6 Fixing Calibration Parameters

When fitting calibration parameters, it is not always desirable to allow the program to
vary all of the calibration parameters. For example, the energy of the beam used during the
diffraction experiment might be already very well known already so there would be no reason
to calibrate the energy. If you wish to fix any of the calibration parameters values so that it
does not vary during a calibration fit, you can use the check boxes under the “Fixed?” label
to fix the parameter. When the corresponding check box is checked, the parameter will not
vary during the fit. When it is not checked, the parameter will vary during the fit. You can
not fix the pixel length and pixel height because they are always held fixed. This is because
these are never the short of thing that one would want to vary. They are some property of
the detector that is known in advance.

11.7 Displaying Constant Q Lines

After the program has been given a diffraction file, a list of the constant Q lines, and some
calibration parameters, the program has a very useful feature where it can display on top
of the image the diffraction pattern that should show up for the particular Q lines and the
particular calibration parameters.

The “Draw Q Lines?” button on the “Calibration” tab enables this. Figure 11.3 shows
what the diffraction image looks like with the Q lines drawn on it.

Drawing these lines is actually very easy. For each Q value, the program picks a lot of
χ values. We know that each of the Q, χ values is in the constant Q line so we can use the
calibration parameters to convert them to x, y values and connect all the pixel coordinates
to make the line.
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Figure 11.3: A diffrac-
tion image with constant
the Q lines displayed on
it.
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Constant Q lines can also be drawn on top of the caked data. This is described in
section 13.4. The color of the Q lines can be changed using the “Color” button next to the
“Draw Q Lines?” button.

11.8 Displaying Constant ∆Q Lines

The program needs in addition to the Q values a range inQ to find the peaks. See section 11.2
for more details. Because the program has this range, it can also display the ∆Q range on
top of the image. This can be done with the “Draw dQ Lines?” button and the color of
these lines can be changed with the corresponding “Color” button. Figure 11.4 shows what
the diffraction image looks like with the ∆Q lines drawn on it.

Figure 11.4: A diffrac-
tion image with the con-
stant ∆Q lines displayed
upon it.

Constant ∆Q lines can also be drawn on top of the caked data. This is described in
section 13.4.

11.9 Displaying Peaks

Section 11.2 describes how the program has to find a bunch of peaks on the diffraction
image in order to perform the calibration. After the program has found all the peaks, it can
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conveniently display them on top of the diffraction image. This can be done with the “Draw
Peaks?”. The peaks will be displayed as crosses and the color of the peaks can be changed
with the corresponding “Color” button. Figure 11.5 shows what the diffraction image looks
like with the peaks drawn on it. This feature is useful because you can use it to see if the
program is actually finding real peaks corresponding to diffraction maxima. If many of the
peaks that the program finds do not correspond to diffraction maxima, it is less likely that
the program would do a good job calibrating the diffraction image.

Figure 11.5: A diffrac-
tion image with the
peaks displayed upon it.

Peaks can also be drawn on top of the caked data. This is described in section 13.4.

11.10 Masking Peaks

The general idea behind masking peaks is allow polygon masks (see chapter 12) to be used
as a way to forbit the program from using any peaks found within a certain region. So if a
polygon mask covers a certain area of the image, none of the peaks found within that area will
be used while calibrating. Also, none of the peaks will be displayed on top of the diffraction
image or cake image. An example of this is shown in figure 11.6a. See section 11.9 for a
discussion of displaying peaks on a diffraction image. Figure 11.6b shows the same effect on
top of the corresponding caked plot. See chapter 13 for a discussion of caking. In particular,

100



see section 13.5 for more information on displaying peaks on a caked image. This feature
was added in version 2.0.0.

11.11 Saving the Peak List

The program has a feature where it can generate a list of diffraction peaks that it finds the
diffraction image (just like when it is calibrating) but then instead of calibrating the image,
the program saves out all of the peaks to a data file. This can be useful, for example, if you
need a list of pixel coordiantes where diffraction peaks are for some further data analysis.
The “Make/Save Peak List” button can be used to save out the peak list. Just as in
calibrating, the program requires in advance for a diffraction file to be loaded, for a standard
Q file to be loaded, and for a guess at the calibration parameters to be in the inputs.

A typical peak list file looks like4

Listing 11.5: A Peak List File,basicstyle=

1 # A list of peaks found in the diffraction image.

2 # Calculated on Sun Apr 6 18:06:56 2008

3 # Calibration data used to find peaks:

4 # x center: 1725.0000000 pixels

5 # y center: 1725.0000000 pixels

6 # distance: 122.5040000 mm

7 # energy: 12714.2388941 eV

8 # alpha: 0.0000000 degrees

9 # beta: 0.0000000 degrees

10 # rotation: 0.0000000 degrees

11 # pixel length: 100.0000000 microns

12 # pixel height: 100.0000000 microns

13 # x y RealQ FitQ chi width intensity 2theta

14 2016.15 1724.44 1.511 1.50 0.11 0.0075 5564.32 13.36

15 2016.68 1719.33 1.51 1.50 1.11 0.0093 1662.72 13.39

First, the file contains the calibration parameters used to generate the peaks. Then it has
a comment string describing each of the numbers in each of the rows that follow. Each
row corresponds to a unique peak. The first two numbers x and y are the x and y pixel
coordinate corresponding to a location in the diffraction image of the peak. RealQ is the
Q value found in the Q list that is already known. FitQ is the Q value calculated from
the (x, y) coordinate using the calibration parameters. χ is also calculated from the pixel
coordinate using the calibration parameters. Intensity is intensity value found in the data
at this peak. 2θ is calculated at the (x, y) coordinate using the calibration parameters.

4I have modified what a real file looks like a bit. The numbers are really tab separated but I show them
space separated for brevity.

101



11.12 Handling Calibration Data

There are inputs in the calibration tab of the program for input of the calibration parameters.
“xc” is for the x center, “yc” is for the y center, “d” is for the distance, “E” (or “λ:”) is for
the energy or wavelength. The α, β, and R inputs are for the three angles. “pl” stands for
the pixel length and “ph” stands for the pixel height.

You can directly input calibration data using the inputs and once the data is in the inputs
it can be used by the program to do the calibration (or the caking or anything else).

But there are a couple of other ways to deal with calibration data. You can load and save
calibration program from the program using the “Load From File” and “Save To File”
buttons. This is nice because it can be used, for example, to save the data that was found
by calibration data for future reference. As you will see, the calibration data files can handle
information about whether the parameters should be fixed (see section 11.6).

The format for a calibration data file is pretty simple. Below is an example

Listing 11.6: Calibration Parameters

1 # Calibration File

2 xc 1725.000000 0

3 yc 1725.000000 0

4 D 125.296000 0

5 E 12735.395772 0

6 alpha 0.000000 0

7 beta 0.000000 0

8 rotation 0.000000 0

9 pixelLength 100.000000

10 pixelHeight 100.000000

Comment lines beginning with a # and are ignored. Each of the parameters gets its own line.
Each parameter name is followed by some spaces or tabs and then the value. The value can
be followed by an optional second number which is either zero or one. The second number
corresponds to whether or not the parameter should be fixed while fitting. One means fix
the parameter. Zero means let it very. If no number is given, the default is to not fix the
parameter.

Instead of energy, the wavelength of the incoming beam of light can be stored in a
calibration file. The wavelength line would look like “wavelength 0.973540”. When the
program is in wavelength mode, the program will save out calibration parameters with this
line instead of the one above. The program will load in a file containing either no matter
what mode the program is in. It will do the conversion if it has to do put the right value
into the input. See section 11.5.

11.13 Handling Q Data

Q data is always loaded into the program from files. Q data can be loaded into the program
with the “Q Data:” input on the calibration tab. You can either type in the filename of the
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Q file by hand and push the load button or click on the folder icon to the side and use the
file selector to pick the file that you want.

The Q data file format is pretty simple. Below is an example

Listing 11.7: Lanthanum Hexaboride.dat

1 # This is Q Data for Lanthanum Hexaboride

2 Q dQ

3 1.511543809 .05

4 2.137646823 .05

5 2.618102966 .05

6 3.023087619 .05

7 3.379873753 .05

8 3.702525225 .05

9 ...

Comment lines beginning with a # and are always ignored. The first line in the file should
be of the form ”Q dQ” or ”Q delta Q” to specify that this is a list of Q values. The rest
of the file should have Q values followed a ∆Q range. All Q values must be larger than 0.
None of the Q ranges can overlap. Instead of inputting Q values, the program can input D
values if the first line is instead ”D dD” or ”D delta D” The values should be given instead
in D space and the values will be converted using 10.21.

11.14 The “Get From Header?” Input

Often times guesses at the experimental parameters are stored in the header data inside of
the diffraction image. The program can try to find these header calibration parameters and
put them into the calibration parameters inputs in the program. This can be done with the
“Get From Header” button.
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(a) A diffraction image with diffraction peaks and two
polygon masks displayed on top of it.

(b) A caked plot with diffraciton peaks and two poly-
gon masks displayed on top of it.

Figure 11.6: Polygon masks can be used to block out certain regions of the image. Whenever
a polygon mask is loaded into an image, none of the peaks found in the mask’s region will
be used while calibrating the image. Furthermore, none of the peaks within the masks will
be displayed on the diffraction image or caked plot.
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Chapter 12

Pixel Masking

When analyzing diffraction dat, not all of the pixels in an image should be used in the
analysis. In order to make the program ignore certain pixels when doing the analysis, this
program allows for two types of pixel masking: threshold masking and polygon masking.
You can apply either of these from the “Masking” tab. figure 12.1 shows this tab.

12.1 Threshold Masking

The top half of the “Masking” tab is devoted to threshold masking. Threshold masking
allows all pixels, either above a certain intensity or below a certain intensity, to be ignored
when doing the diffraction analysis. The “Do Greater Than Mask?” check box can be used
to apply a mask that will cause all pixels greater than a certain value to be ignored. The
“(Pixel’s Can’t Be) Greater Than Mask” input can be used to specify the maximum
pixel value. Correspondingly, the “Do Less Than Mask” check box can be used to make the
program ignores all pixels below a certain value. The particular value can be specified with
the “Less Than Mask” input.

When you apply a threshold mask, the pixels over this threshold will all be colored
differently on the diffraction and cake image. You can specify what you want these masked to
be colored with the “Color” button next to the greater than and less then masks. Figure 12.2
shows what a diffraction image looks like when all pixels with intensity above 5000 are colored
green and all pixels below 30 are colored red.

When caked data is saved out to a file, any of the pixels that are larger than the greater
than mask are saved as -2. Any of the pixels smaller than the less than mask are saved as -3.
If you need to analyze caked data outside the program, this behaviour needs to be accounted
for.

When an intensity integration is saved to a file, any of the too high or too low pixels are
simply ignored when calculating average intensity.
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Figure 12.1: The
pixel masking tab. It
allows for threshold
masking and polygon
masking.
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Figure 12.2: A diffraction
image with a greater than
mask and less than mask.
All pixels with intensity
greater than 5000 have
been colored green. All
pixels with intensity less
than 30 have been colored
red. Applying an intensity
mask can be a useful way
to see if a detector’s pix-
els have been overloaded.
They can also be a used to
ensure that no overloaded
pixels are used in subse-
quent data analysis.
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12.2 Polygon Masking

Figure 12.3: Here are two
polygon masks that have
been applied to a diffrac-
tion image. One of them
blocks the beam stop.

Sometimes, large areas of a diffraction image should not be included in any data analysis.
For example, often a beam stop blocks part of the detector and the pixels behind the beam
stop should be ignored. To allow for this sort of masking, the program has a polygon masking
feature. Polygons can be drawn around certain parts of the diffraction image and those parts
of the image will not be used in any subsequent analysis. This program can handle multiple
polygons at the same time.

So long as the “Do Polygon Mask?” check box is selected, the polygon masks will be
used when performing subsequent analysis. The polygons will be displayed on the diffraction
and cake image. Any pixel in the diffraction or cake image that is inside one of the polygons
will have a different color. An example of polygons on a diffraction image are shown in
figure 12.3. The color of the polygon masks can be changed using using the “Color” button
next to the “Do Polygon Mask?” check box. When caked data is saved out, any pixels
inside polygon masks will be given an intensity value of -4. During an intensity integration
masked pixels will be ignored.

A polygon mask can be added to the image by pushing the “Add Polygon” button on
the “Masking” tab. This button will stay down when pushed. Pushing it puts the program
in polygon drawing mode. In this mode, the diffraction image will behave differently. The
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Figure 12.4: Here is the in-
terface for adding a new
polygon mask to the pro-
gram. This particular
mask will cover the beam
stop so that the beam stop
does not affect the inten-
sity integration.

109



diffraction image can no longer be zoomed or panned. Instead, left clicking on the diffraction
image will make the program draw the polygon. The first left click adds the first vertex.
Each success left click add another vertex. The drawing can be finished by right clicking (this
will also create a final vertex). Right clicking will make the program exit the drawing mode,
return to its original state, and add the polygon into the program. Multiple polygons can
be added using the “Add Polygon” button. Figure 12.4 shows the program when a polygon
is being drawn. Drawing a polygon can be aborted without saving the mask by unpushing
the “Add Polygon” button.

Figure 12.5: Here is the
diffraction image window
as a polygon is about to be
removed. When mousing
over a polygon to remove
it, the program will display
a red border around it.

The “Remove Polygon” button can be used to remove a polygon in the program. Like
the “Add Polygon” button, this button will stay pushed and change the behavior of the
diffraction image. After the “Remove Polygon” button is pushed, clicking over a particular
polygon will remove it. After the polygon is removed, the program will return to its normal
state. Figure 12.5 shows what the diffraction window looks like when a polygon is about to
be removed. The program can be returned to its normal state without removing a polygon
by unpushing the “Remove Polgyon” button.

The “Clear Mask” button can be used to remove all the polygons at once. The “Save
Mask” button can be used to save all the polygons to a file. A file of polygons can be added
to the program using the “Load Mask” button. The file for polygon files is very simple. For
the polygons in figure 12.3, the following file would be saved:
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Listing 12.1: ’polygons.dat’

1 # Polygon(s) drawn on Thu Feb 07 00:00:21 2008

2 93.140587183 1098.06704199

3 208.013978042 1237.77792276

4 1052.48863517 1237.77792276

5 1213.93231962 1271.92947139

6 1248.08386825 1126.00921814

7 1095.95424252 1067.02017959

8 1064.90738013 1104.27641447

9 847.579343365 1122.9045319

10
11 332.201427619 737.923438212

12 633.355992844 902.471808902

13 729.601266267 709.981262058

Each line is an (x,y) coordinate for one of the nodes of a polygon. The coordinates are
separated by spaces. Each polygon is separated by a newline. Comment lines beginning
with # are ignored.

12.3 Masking Caked Plots

Any polygon mask or threshold mask will also show up on the caked plot. Polygons on the
diffraction image can look very distorted on caked plots. Figure 12.6 shows an example.
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(a) A rectangular polygon mask in the middle of a
diffraction image

(b) The same rectangular mask on a caked plot

Figure 12.6: An example of how a relatively simple shape on a diffraction image will can
look very different on a caked plot.
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Chapter 13

Caking

13.1 The Caking Algorithm

A caked plot is like a radial (r vs θ) plot of the diffraction data as it would appear if it
were captured on an untitled detector. A radial plot will make circles of constant r become
straight lines. Caked plots are important because diffraction peaks will also be straight lines.
A caked plot is actually a plot of Q vs χ. Equation 10.19 shows that Q is related by the sin
function to 2θ and 2θ is just the scattering angle of the diffraction peak. From equation 10.17,
2θ is related to the radius r by a tangent function. Although the relationship is not linear,
Q increase as r increases and therefore Q is a similar quantity to r. χ corresponds to the
angle radially around the center of the image. So a cake plot of Q and χ is really analogous
to a radial plot.

Cakes plots are calculated with the following algorithm. The program must first bin Q
and χ space. The user can specify the bin range and bin size with inputs. Alternately, the
code can try to pick a range that is large enough to encompass the whole region. Once the
bin size is specified, the program has to fill each bin an intensity value. Since each bin has
some particular Q and χ value1 we can calculate the corresponding (x′′′, y′′′) pixel coordinate
for this Q and χ value using equation 10.15 and 10.16. The intensity value for the pixel
coordinate x′′′ and y′′′ is the intensity that should be put in the bin. (x′′′, y′′′) is generally not
a whole number so a bilinear interpolation of the intensity around this coordinate is used to
get a best estimate.

In principle, the caking algorithm could be implemented differently. The algorithm cur-
rently runs a loop over each bin. One could alternately loop over all the pixels of diffraction
data. Each pixel has a particular (x′′′, y′′′) coordinate. Equations 10.9 and 10.11 could be
used to calculate the Q and χ value for each pixel in the image, and each pixel could be put
into its corresponding bin. After doing this for all the pixels, we could average the intensity
in all the bins. This implementation does not necessarily put an intensity value into all the
bins. This could be overcome by applying the previous algorithm only to the bins for which

1Technically, each bin has a Q and χ range. We will take the middle of the bin to be the particular Q
and χ value for the bin.
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nothing was added. This method would in some ways be more accurate because each of the
pixels in the diffraction image would be used in the analysis whereas they are aren’t all used
in the above algorithm. But the biggest downside of this alternate algorithm is that it is sub-
stantially slower because there are usually significantly more pixels in the diffraction image
then bins used in a cake. For example, mar3450 data holds 3450 × 3450 pixels while cakes
typically have a resolution of 1000× 1000. This alternative algorithm was not implemented
for this reason.

Caked data can be masked with pixel masks. Whenever the program finds an intensity
value that should be masked (either because it is too large, too small, or in a polygon mask),
it fills in that part of the caked array with a particular negative value. When the caked data
is displayed, these negative values are given special colors.

The program can perform a polarization correction of the caked data. The polarization
correction formula is

I = Im/PF (13.1)

PF = P (1 − (sin(2θ) sin(χ− 90))2) + (1 − P )(1 − (sin(2θ) cos(χ− 90))2) (13.2)

with Im the measured intensity. The 2θ and χ values correspond to the particular value
that is being corrected. All pixels have their intensity corrected by this formula before they
are put into a cake bin.

13.2 Caking with the Program

Figure 13.1 shows the “Caking” tab. This is where caking is done. The program can
only cake data after one or more diffraction files has been loaded into the program and
after calibration values for the particular diffraction image are loaded. In order to cake, this
program needs to know a range in Q and χ space that should be caked. This can be inputted
with the “Q Lower?”, “Q Upper?” “Chi Lower?”, and “Chi Upper?” inputs. The program
will also need to know how many Q and χ bins to create when caking data. This can be
inputted with the “Number of Q?” and “Number of Chi?” inputs. Once this is done, the
“Do Cake” button will cake the data.

After the cake finishes, the program will open a cake data window which displays the
cake data interactively. The cake data window acts just like the diffraction data window so
everything in Chapter 9 carries over. The only real difference is that whenever the caked
data is zoomed into, the program will take the selected zoom range and put it into the inputs
on the cake tab and the recake the image. The caked data can be taken to the previous
zoom level either by right clicking on the caked plot or by pushing the “Last Cake” button

13.3 AutoCake

The program has a convenience button “AutoCake”. “AutoCake” will guess a good range of
Q and χ values, put them into the input, and then push the “Do Cake” button automatically.
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Figure 13.1: The
caking tab of the
program. This is
where caking is done.
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Figure 13.2: The cake data
window for the program.
This window will open up af-
ter the data is caked. This
window behaves exactly like
the diffraction data window.

This will create a cake without much work. The program will pick a range that puts every
pixel from the diffraction image into the cake. It will pick a bins sizes so that each pixel
of the displayed cake data will correspond to one bin. This will ensure that the cake looks
as sharp as the computer can draw it. After the display is resized, the number of bins will
change correspondingly. The next time “AutoCake” is pushed, the cake window will again
look sharp.

13.4 Displaying Q and ∆Q Lines

If a Q list has been loaded into the program, constant Q lines or ∆Q lines can be displayed on
top of the cake data. Remember that constant Q lines on the diffraction image are straight
vertical lines on the caked plot. The program will display constant Q lines or ∆Q lines on the
caked plot whenever they should be displayed on the diffraction image. See section 11.7 and
section 11.8 for a discussion of displaying constant Q lines on diffraction data. Figure 13.3
shows constant Q lines displayed on a caked plot and figure 13.4 shows constant ∆Q lines
displayed on a caked plot.
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Figure 13.3: The caked data window
with constant Q lines drawn on top
of it.

Figure 13.4: The caked data window
with constant ∆Q lines drawn on top
of it.
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Figure 13.5: The caked data window
with diffraction peaks drawn on top
of it.

13.5 Displaying Peaks

Any peaks that the program finds when performing a calibration can be displayed on top of
the caked data. The peaks will be displayed as crosses. Figure 13.5 shows peaks displayed on
a caked plot. Peaks will be displayed on the caked plot whenever they should be displayed
on the diffraction image. See section 11.9 for a discussion of displaying peaks on diffraction
data. Being able to display Q lines and peaks can be very useful for checking if a calibration
was done properly. Figure 13.6 illustrates this principle.

13.6 Polarization Correction

The program can apply a polarization correction to the cake. The “Do Polarization

Correction?” check box can be used to apply a polarization and the polarization value
can be set with the “P?” input.

13.7 Working in 2θ

Caked plots can have 2θ instead of Q as one of the axis. This can be done by changing
the program to 2θ mode by doing into the file menu and selecting the “Work in 2theta”
option. When this is selected, all the names in the program will change from Q to 2θ. For
example, the program will have “2θ Lower ”, “2θ Upper”, “Number of 2θ”. The program
will display the cake image with 2θ as its axis. The “Work in Q” option in the file menu
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(a) A bad calibration (b) A good calibration

Figure 13.6: displaying peaks and constant Q lines on top of the caked data can be used to
tell if the data is properly calibrated. If the calibration is good, all the peaks will cluster very
close to a particular value of Q line and there will be no systematic variation of the diffraction
peak. If the calibration is bad, the diffraction peaks will have a systematic distortion around
some value of Q. This can be used to see if the program is properly calibrating the data.

can be used to return the program to caking withQ as one of the axis. This feature was
introduces in version 2.0.0 of the program.

13.8 Saving Cake Images

You can save caked data out as one of many popular image formats. The program can save
caked images as “jpg”, “gif”, “eps”, “pdf”, “bmp”, “png”, or “tiff”. When caked data is
saved as an image, it will be saved out with whatever threshold masks, polygon masks, Q
lines, ∆Q lines, and peaks were displayed over the caked data in the program.

13.9 Saving Cake Data

Caked data can also be saved as a plain text data file. This can be done by pushing the
“Save Data” button and selecting a destination. The format for caked files is just a long
comment string followed by the data as rows of numbers. Here is an example:

Listing 13.1: ’caked data.dat’
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1 # Cake of: N:/data/LaB6_14_02_56.mar3450

2 # Data Caked on Wed Mar 12 21:30:55 2008

3 # Calibration data used to make the cake:

4 # x center: 1725.0000000 pixels

5 # y center: 1725.0000000 pixels

6 # distance: 125.2960000 mm

7 # energy: 12735.3957721 eV

8 # alpha: 0.0000000 degrees

9 # beta: 0.0000000 degrees

10 # rotation: 0.0000000 degrees

11 # pixel length: 100.0000000 microns

12 # pixel height: 100.0000000 microns

13 # A Polarization correction was applied

14 # P = 0.500000

15 # A greater than mask was applied

16 # Greater than mask = 1000.000000

17 # A Less Than Mask was applied

18 # Less than mask = 10.000000

19 # Polygon mask(s) were applied

20 # Polygon(s) used in the analysis:

21 # 2400.10912343 1073.5706619

22 # 962.511627907 2282.88014311

23 # 2850.51520572 2572.86762075

24 #

25 # 1573.33631485 1215.47942755

26 # 1820.13416816 2893.70483005

27 # 2906.04472272 1573.33631485

28 # Cake range:

29 # Q Lower = 0.000000

30 # Q Upper = 6.726544

31 # Number of Q = 560.000000

32 # Q Step = 0.012012

33 # chi Lower = -180.000000

34 # chi Upper = 180.000000

35 # Number of Chi = 560.000000

36 # chi Step = 0.642857

37 # Note: pixels outside the diffraction image are saved as -1

38 # Pixels greater than the greater than mask are saved as -2

39 # Pixels less than the less than mask are saved as -3

40 # Pixels inside of a polygon masks are saved as -4

41 # chi increased down. Q increases to the right

the comment string describes what state the program was in when the cake was done. It
first lists the name of the diffraction file(s) that were caked. Next it lists the calibration
parameters used when caking the data. Then is the polarization correction, the greater than
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mask and the less than mask that were used. It has the pixel coordinates of any polygons
that were used when caking. It then lists the range of the cake and the number of bins that
were used. The program sets the value of certain bins in the data to special values. Bins
that are outside of the diffraction image are saved as -1. Bins that were masked because
they were too large are saved as -2. Bins that were masked because they were too small
are saved as -3. Bins that were inside a pixel mask are saved as -4. This is written in the
comment string.

The program tries to be smart about the comment string. If no masks were used, the
comment string instead contains lines like

Listing 13.2: ’Alternate Header’

1 # No greater than mask was applied

2 # No less than mask was applied

3 # No polygon masks were applied

If the program is working in 2θ mode, the comment string will instead say something like

Listing 13.3: ’Another Alternate Header’

1 # 2theta Lower = 0.000000

2 # 2theta Upper = 62.814525

3 # number of 2theta = 560.000000

4 # 2theta Step = 0.112169

Then comes the data. As the header describes, each line in the file is of constant χ and
contains many numbers separated by spaces. Each column is of constant Q. χ increases
down and Q increases to the right. The top left bin corresponds to Q lower and χ upper.
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Chapter 14

Intensity Integration

14.1 The Integration Algorithm

An intensity integration is a plot of average intensity as a function either Q, 2θ, or χ. The
calibration values for the diffraction data must be known before the integration is done. A
range and bin size for the integration must be give. For example, a Q− I integration might
have a range from 2 to 5 with 100 bins.

The algorithm for performing the intensity integration is as follows: loop over every pixel
in the image. Add its intensity to a bin if it Q, 2θ, or χ value falls within the bin’s range. We
need to know the calibration values because they are used to calculate Q, 2θ and χ from the
pixel’s coordinates using using equations 10.9 10.11, 10.18, 10.17, and 10.19. After binning
all the pixel, the bins are then averaged.

This program can constrain the integration range. This means that you can perform,
for example, a Q integration of only those pixels with some particular χ range. Or, you
can constrain your χ integration to a particular Q range. This could be used, for example,
to perform a χ integration of only one diffraction peak. The algorithm for performing the
constraint isn’t different. You just only bin intensity values which are allowed by by the
constraint.

The program can perform a polarization correction to the integration. The polarization
correction formula is

I = Im/PF (14.1)

PF = P (1 − (sin(2θ) sin(χ− 90))2) + (1 − P )(1 − (sin(2θ) cos(χ− 90))2) (14.2)

with Im the measured intensity. The 2θ and χ values correspond to the particular value
that is being corrected. If this option is selected, all pixels have their intensity corrected by
this formula before they are binned.
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14.2 Integrating with the Program

The program requires one or more diffraction images and calibration parameters to be
loaded into the program before an intensity integration can be done. Figure 14.1 shows
the “Integrate” tab. This is where integration is done. There are two sets of inputs on the
tab. The inputs on the left is titled “Q-I Integration” and can be used for performing Q
integration. The “Q Lower?” and “Q Upper?” inputs on the left can be used to specify an
integration range in Q. The number of bins in Q space can be specified with the “Number
of Q?” input. The “Integrate” button on the left can be used to perform a Q integration.

Figure 14.1: The in-
tegration tab. This is
where intensity inte-
gration is done.

The inputs on the right is titled “Chi-I Integration” and can be used for performing
a χ integration. The “Q Lower?” and “Q Upper?” inputs on the right can be used to
specify an integration range in χ. The number of bins in χ space can be specified with the
“Number of Chi?” input. The “Integrate” button on the right can be used to perform χ
integration.
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Figure 14.2: The integration window
that opens up after an intensity inte-
gration is performed.

Figure 14.3: The integration window
that opens up after you perform an
intensity integration.
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14.3 The Integration Window

After the program finishes integrating, a line plot of the integrated data will be displayed
in a new window. Figure 14.2 shows the integration window displaying Q − I integrated
data and figure 14.3 shows the window displaying χ − I integrated data. This window has
a couple of nice features for interacting with the data:

• Zoom into the data – left click on the plot and hold down on the mouse. When the
mouse is moved around, the program will create a resizing rectangle. When the mouse
is released, the program will zoom into the selected range.

• Zoom out of the data – right click on the plot.

• Resize the window – click on the bottom right corner of the window and drag. The
window will resize just like any other window and the plot will become larger or smaller.

• Read coordinates for a selected point – when mousing over certain the plot, the selected
Q, χ or 2θ and intensity value will be displayed on the bottom of the window.

• Log Scaling – the “Log Scale?” check box will toggle whether to display a log scale
of the data.

14.4 Working in 2θ

This program can integrate in 2θ instead of Q. This The “Work in 2theta” option in the
menu bar can be used to change the way that integration is done. This option will make the
label on the left to say “2θ-I Integration”. The inputs below will change to “2θ Lower”,
“2θ Upper”, and “Number of 2θ”. The “Integrate” button will then perform an integrate
in 2θ. The diffraction window will display average intensity as a function of 2θ. If there are
any values in the “Q Lower” or “Q Upper”, they will be convert from Q to 2θ values when
the program switches. The “Work in Q” option in the menu bar can be used to change the
program back to working with Q. Any values in the “2θ Lower?” or “2θ Upper?” will be
converted back.

14.5 AutoIntegrate

There is a convenience function called “AutoIntegrate” that is similar to the “AutoCake”
button. “AutoIntegrate” will try to pick a nice integration range and then do the integra-
tion. The AutoIntegrate button on the left will guess at a nice range of Q (or 2θ) and then
do the Q (or 2θ) integration. It will always make the lower Q or 2θ value 0 and the upper
value large enough to include all the data. It will set the number of Q or 2θ to 200. The
“AutoIntegrate” button on the right will guess a nice range of χ and do the χ integration.
It will always set “Chi Lower” to -180, “Chi Upper” to 180, and “Number of Chi” to 200.

126



14.6 Constraining the Inputs

As was described in section 14.1, an integration of one parameter can be constrained by
another parameter. For example, a Q or 2θ integration can be done only of values in a
particular χ range. χ integration can only be done of a particular Q or 2θ range. Of course,
it would be pointless to constrain Q to a certain range of 2θ or vice versa.

To constrain the integration using the program, there are two convenient “Constrain
With Range On Right?” and “Constrain With Range On Left?” check boxes.

When “Constrain With Range On Right?” is selected, the Q or 2θ integration being
done will be constrained in χ by the chi range specified by “Chi Lower” and “Chi Upper”.
When “Constrain With Range On Left?” is selected, the χ integration will be constrained
by either the Q range specified by “Q Lower?” and “Q Upper?” or the 2θ range specified
by “2θ Lower?” and “2θ Upper?”.

14.7 Masking

The program allows for masking of certain pixels while integrating. Masking of intensity
integrated data is done whenever the “Do Greater Than Mask?”, “Do Less Than Mask?”,
or “Do Polygon Mask?” check boxes are selected. Whenever the program finds an intensity
value that should should be masked (either because it is too large, too small, or in a polygon
mask), the program will ignore the pixel and not bin it. Refer to Chapter 12 for a discussion
of masking.

14.8 Saving Integrated Data

The intensity integrated data can be saved to a file using the “Save Data” button. A typical
integration file looks like:

Listing 14.1: ’A Cake Data File’

1 # Q vs I Intensity Integration

2 # Intensity integration of: C:/data/LaB6_14_02_56.mar3450

3 # Data Integrated on Fri Mar 21 17:59:16 2008

4 # Calibration data used:

5 # x center: 1725.0000000 pixels

6 # y center: 1725.0000000 pixels

7 # distance: 125.2960000 mm

8 # energy: 12735.3957721 eV

9 # alpha: 0.0000000 degrees

10 # beta: 0.0000000 degrees

11 # rotation: 0.0000000 degrees

12 # pixel length: 100.0000000 microns

13 # pixel height: 100.0000000 microns

14 # A polarization correction was applied
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15 # P = 1.000000

16 # A greater than mask was applied

17 # Greater than mask = 10000.000000 (All pixels above 10000.000000 were i

18 # A Less Than Mask was applied.

19 # Less than mask = 50.000000 (All pixels below 50.000000 were ignored)

20 # Polygon mask(s) were applied

21 # Polygon(s) used in the analysis:

22 # 647.844364937 1369.72808587

23 # 1449.93738819 3226.88193202

24 # 2535.84794275 1449.93738819

25 #

26 # 1258.66905188 641.674418605

27 # 1215.47942755 999.531305903

28 # 1505.46690519 1116.76028623

29 # 1653.54561717 777.413237925

30 # Integration performed with a chi constraint

31 # chi constraint lower: 90.000000

32 # chi constraint upper: 270.000000

33 # Integration Range:

34 # Q Lower = 0.000000

35 # Q Upper = 6.726544

36 # Number of Q = 200.000000

37 # Q Step = 0.033633

38 # Q Avg Intensity

39 0.016901 0.000000

40 0.050703 0.000000

41 0.084504 0.000000

42 0.118306 0.000000

43 0.152108 0.000000

44 0.185910 0.000000

45 ...

The header is a bunch of lines that begin with #. The header describes the state that the pro-
gram was in when the intensity integration was performed. The fist line describes what type
of integration was performed. For example, if a χ− I integration was performed, the header
file will say “# Chi vs I Intensity Integration”. The header then contains the name(s)
of the diffraction files that were integrated. The header contains the calibration parameters
that were used when integrating. The header contains information about any polarization
correction, greater or less than mask that was applied, polygon mask that was applied. It
describes any constrains on the integration and finally the integration range and step size.
Following the header is the line “# Q Avg Intensity” (or “# Chi Avg Intensity” or “#
2theta Avg Intensity”). Following it is the data. Each line contains two numbers corre-
sponding to one bins. The first number is the middle Q (or χ or 2θ value) in the bin and
the second number is the average intensity.
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Chapter 15

Macros

This program is almost fully automatable with macros. Macros canb e used to perform data
analysis as quickly as possible. The program is capable of recording macros and running
macros. The macro file format is simple enough that it is easy write or modify macro files
by hand.

Figure 15.1: The
“Macro” menu bar.
This is where macros
are recorded and run.

15.1 Record Macros

The easiest way to create a macro is to record it. A macro can be recorded by selecting the
“Start Record Macro” option in the “Macro” menu bar. Figure 15.1 shows the “Macro”
menu bar. After all of the steps that should be recoreded are finished, pushing “Stop Record

Macro” will save the macro file to a selectable file.

15.2 Run Macros

The “Run Saved Macro” option in the “Macro” menu to run a macro file. The program
will run all the steps in the macro file and then return control of the program. This is how
analysis can be done with macro files.
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15.3 The Macro File Format

A macro file contains a list of commands which tell the program what to do. Each command
in the GUI is on its own line. The syntax for macro commands is pretty straightforward.
Macro commands are the text corresponding to the part of the GUI that does the command.
For example, to make the macro get the calibration data from the header of the image, the
macro command is “Get From Header”. To fit the calibration data from within a macro,
the command is “Do Fit”.

Things get more interesting when the GUI item requires requires doing more then just
pushing a button. For example, to deselect the “Draw Q Data?” check box, the macro
needs to specify that the check box gets deselect instead of selected. For these, the macro
commands need to be followed by a second line with the particular. For this example, we
would write

Listing 15.1: ’Draw the Q Lines on the Display’

1 Draw Q Data?

2 Select

3 # Or, to not display them:

4 Draw Q Data?

5 Deselect

It is the same when numbers should be set. To change a calibration values, the macro would
look like:

Listing 15.2: ’Input a Number’

1 xc:

2 1752.3

3 beta:

4 5.23

These are treated just the same. The following macro command would save the cake as an
image:

Listing 15.3: ’Save the Caked Image’

1 Save Caked Image

2 C:/data/cake_output.jpg

If you look on the first tab, there are three inputs at the top: “Get From Header:”,
“dark current:”, and “Q data:”. The macro command to load any of these is a little bit
ambiguous. When using the actual GUI, you would, at least in principle, type in the name
of a file and then press load. But there is no reason to make the GUI so redundant. So to
load in any of these using a macro command, all you have to do is give the name of the input
and then the filename. It will automatically load the file without you explicitly giving the
“load” line. So, for example, to load in the Q data, you would include the following lines:
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Listing 15.4: ’Load the Q Data’

1 Q Data:

2 C:/data/q_data.dat

15.4 Looping Over Diffraction Data

To analyze a file, the command is just

Listing 15.5: ’Load the Diffraction Data’

1 Data File:

2 C:/data/first.mar3450

3 Get From Header

4 # ...

But macros files also allow for an easier way to loop over many files and perform the same
analysis on all of them. To loop over multiple diffraction images at once, you could simply
give more files after the first one. The loop will end when one of the 3 things in the macro
file happens: a subsequent line in the macro file reads “END LOOP”, more diffraction data is
loaded using the command “Data File:”, or the macro file ends. For example, if we look
at this macro file.

Listing 15.6: ’Loop Over Diffraction Data’

1 Data File:

2 C:/data/first.mar3450 C:/data/second.mar3450

3 Integrate Q Lower?

4 .25

5 Integrate Q-I

6 END_LOOP

7 Draw Q Lines?

8 Select

9 # ...

We see that it would get evaluated just like this macro file:

Listing 15.7: ’An Equivalent Macro’

1 Data File:

2 C:/data/first.mar3450

3 Integrate Q Lower?

4 .25

5 Integrate Q-I

6 Data File:

7 C:/data/second.mar3450

8 Integrate Q Lower?

9 .25
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10 Integrate Q-I

11 Draw Q Lines?

12 Select

13 # ...

You can even give it whole directories. When you give it a directory to loop over, the program
will (non-recursively) look for all the diffraction files in that directory and include them in
the list. For example, if the folder “C:/data/” contains only the file “first.mar3450”
and “second.mar3450”, an equivalent way of looping over these files would be to issue the
command

Listing 15.8: ’Load the Diffraction Data’

1 Data File:

2 C:/data/

3 # ...

You can put as many folder and files after a “Data File:” line as you wish. Just make sure
to put them all on the same line or the program will complain.

15.5 The PATHNAME and FILENAME Commands

Finally, there is a convenience markup which can help you make fancy macros. When-
ever you have loaded data in, you can refer to the part name of the current diffraction
file that is loaded using the string “PATHNAME” and you can refer to the file name it-
self using the string “FILENAME”. So, in our previous example, if we had loaded the file
“C:/data/second file.mar3450”, “PATHNAME” would get chaned into “C:/data” and “PATHNAME”
would get evaluated to “second file” without the extension. In effect, you can imagine
building back the full name from “PATHNAME” and “FILENAME” using an equation line

C:/data/second file.mar3450= FILENAME/PATHNAME.mar3450

These commands are useful because they allow you to loop over many files at once but still
save things in useful places and with useful names. It would be easy, for example, to save
the intensity data you calculate for each file being looped over using the macro command:

Listing 15.9: ’Using the FILENAME and PATHNAME Markup’

1 Save Integration Data

2 FILENAME/PATHNAME \_int.dat

This would save, for example, “C:/data/first.mar3450”’s intensity data to “C:/data/first int.dat”,
“C:/data/second.mar3450”’s intensity data to “C:/data/second int.dat”, and the same
for all the others. This feature lets you have the macro to save each of the files to the right
place and give it a useful name.
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15.6 Loops Over Multiple Images

We know from chapter 9 that you can load in multiple diffraction images and add them
together. But we have not yet talked about how this can be done inside of a macro. The
syntax is pretty straight forward. We introduce a new macro command named “Multiple
Data Files” which signifies that many files should be loaded. To load in multiple files
and have their intensities added, this command must be followed by a list of filenames
enclosed within [ and ] brackets. Keeping with the same example above, we could load
in “C:/data/first.mar3450” and “C:/data/second.mar3450” and have their intensities
added using the command

Listing 15.10: ’Add the intensities’

1 Multiple Data Files:

2 [C:/data/first.mar3450 C:/data/second.mar3450]

3 # ...

The program enforces that all of the files are in the same folder. This is done so that that
the “PATHNAME” variable remains meaningful when looping over multiple images.

You can then incorporate this into a loop in one of two ways. First, you can simply
put several of these bracketed lists into the macro and each of the lists will be analyzed
separately. For example,

Listing 15.11: ’Loop Over the Analysis’

1 Multiple Data Files:

2 [C:/first.mar3450 C:/second.mar3450] [C:/ third.mar3450 C:/fourth.mar34

3 # ...

This will separately loop over “first.mar3450” and “second.mar3450” added together and
then “third.mar3450” and “fourth.mar3450” added together. But this gets cumbersome.
Alternately, you can simply take all of the files that you want to be added together and
analyzed and group them into subfolders. Each of the subfolders will contain only files that
should be added together and analyzed. If you then give the macro the name of the folder
containing all these subfolders, it will loop over all the subfolders.

For example, suppose we created the folder “C:/data”. Inside of this folder is the sub-
folder “A” containing the files “first.mar3450” and “second.mar3450”. Also inside of the
data folder is the subfolder “B” containing the files “third.mar3450” and “fourth.mar3450”.
We could do the exact same data analysis as above by issuing the macro command with only
the data folder name.

Listing 15.12: ’Using the Folder Syntax’

1 Multiple Data Files:

2 C:/data

3 # ...
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You can also put as many folders and lists separated by [ and ] as you wish onto the line
and it will loop over all of them.

Since the macro function insists that all files that are added together are in the same
folder, the “PATHNAME” command will properly expand to the path that all of the files that
were added together have. But since they all have different file names, the “FILENAME”
command will always be replaced by the string “MULTIPLE FILES” to avoid ambiguity.

15.7 The FOLDERPATH and FOLDERNAME com-

mands

To facilitate writing macros that load in and add together several diffraction images, the
program introduces two new macro commands. The first command is “FOLDERNAME” and
will always be replaced by the name of the folder containing the current diffraction file (or
files). Since the macro insists that all files are loaded form the same Folder, this command is
unambiguous. Finally, you can use the command “FOLDERPATH”. It will always be replaced
by the path leading up to the folder containing the file. Therefore, we can now specify where
the current file is by using the macro command

FILENAME/PATHNAME.mar3450

or the command
FOLDERPATH/FOLDERNAME/FILENAME.mar3450

Basically, this is useful because if you are adding together multiple files, you can put them
all in a folder with an interesting name and then name the output files something like
“FOLDERNAME int.dat” so that they are all given useful names. This is nice because it can,
without loss of generality, be incorporated into a loop. Finally, the “FOLDERPATH” command
is useful because you can use it to output files one directory up from where all the diffraction
data is stored.

15.8 Setting Colors in a Macro

There are several places in the program where you can pick the color of something using a
color selector. It is a little trickier to do. When you issue a macro command that wants to
know the color of something, you have to tell it what that color is. By far the easiest way
to figure out exactly what the macro line should loop like is to simply record a macro where
select the color that you want and then copy the macro lines into your file.

But if you are curious exactly what the format for colors looks like, you can see that
picking a color will generally look like this:

Listing 15.13: ’Use the Folder Syntax’

1 Polygon Mask Color?

2 red
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But it is a bit tricky trying to figure out exactly what colors will work. Technically, this
program will accept any color which tk will accept. The colors that tk will accept by name
are all described here: http://wiki.tcl.tk/16166. But tk can also accept colors based
upon their RGB value. To specify a color by its RGB value, the color must be preceded by
a # and followed by the RGB values in hexadecimal. Each of the RGB values range from 0
to 255 in decimal or (00 to ff in hexadecimal). For example, pure red would be specified by
the color #ff0000. So we could replace the macro command above with the identical

Listing 15.14: ’Use the Folder Syntax’

1 Polygon Mask Color?

2 #ff0000

15.9 Little Tidbits

• Any of the macro commands themselves are case insensitive. The command “GeT
fRoM hEaDeR” is just as valid as the command “gET fROM hEADER” and “Get From

Header”. You don’t have to sweat it.

• White spaces at the beginning and end of the line are ignored. In the preceding
examples, the spaces separating macro commands from input values such as file names
are there only to increase readability. You don’t need them if you don’t want.

• Any new lines in a macro file are ignored.

• comment lines of the form “# A comment” are ignored.

• You don’t have to worry about explicitly moving from tab to tab in the computer
program. The computer program will move to the right automatically before performs
the action.

• When you issue the macro command “E:” or “E Fixed”, the computer program will
automatically set the GUI to “Work in eV”. If you issue the command or “lambda:” or
“lambda fixed:” then the comptuer program will set the GUI to “Work in Lambda”.
You can also explicitly set the GUI to either mode using the command “Work in eV”
or “Work in Lambda”.

15.10 Macro Commands

Below is a table describing all of the macro command and exactly what they do.

135

http://wiki.tcl.tk/16166


Table 15.1: Macro Commands

Command Followed By Effect
Program State Macro Commands

Work In eV None Change the state of the program so that
the energy calibration parameter is in-
putted in units of electron volts. This
is called the eV mode of the program.

Work in Lambda None Change the state of the program so that
the energy calibration parameter is in-
putted instead as a wavelength in units
of angstroms. The conversion is done
using the formula E = hc/λ. This is
called the λ mode of the program.

Work in 2theta None Change the state of the program so
that caking and intensity integration
are done of the variable 2θ.

Work in Q None Change the state of the program so
that caking and intensity integration
are done of the variable Q.

Calibration Values
Data File: Files & Directories Loops over loading in each file.
Multiple Data

Files"

Files & Directories Loops over loading several diffraction
files and adding them together.

Dark Current: Filename Loads in the Dark Current.
Q Data: Filename Load in the Q data.
Standard Q q data Loads in one of the standard Q files.

This command should be followed by
the name of the standard Q file as it is
displayed by the program in the menu
bar.

Get From Header: None Sets the calibration data to the value
stored in the image header.

Load From File: Filename Loads a calibration data file.
Previous Values None Loads the previously stored calibration

values.
Save To File Filename Saves the calibration data to a file.
xc: Number Sets the x center.
xc Fixed: Select or Deselect Sets whether or not to fix the x center

while doing the fit.
yc: Number Set the y center.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
yc Fixed: Select or Deselect Sets whether or not to fix the y center

while doing the fit.
d: Number Set the distance from the sample to the

detector.
d Fixed: Select or Deselect Sets whether or not to fix the distance

while doing the fit.
E: Number Sets the energy. If this command is run

while the program is in λ mode, the
program will switch to eV mode.

E Fixed: Select or Deselect Sets whether or not to fix the energy
while doing the fit. If this command is
run while the program is in λ mode, the
program will switch to eV mode.

lambda: Number Sets the wavelength. If this command
is run while the program is in eV mode,
the program will switch to λ mode.

lambda Fixed: Select or Deselect Sets whether or not to fix the wave-
length while doing the fit. If this com-
mand is run while the program is in
eV mode, the program will switch to λ
mode.

alpha: Number Sets the α angle.
alpha Fixed: Select or Deselect Sets whether or not to fix the α angle

while doing the fit.
beta: Number Sets the β angle.
beta Fixed: Select or Deselect Sets whether or not to fix the β angle

while doing the fit.
R: Number Sets the rotation angle.
R Fixed: Select or Deselect Sets whether or not to fix the rotation

angle while doing the fit.
pl Number The pixel length of the image. This is

the width of one pixel (in microns).
ph Number The pixel height of the image. This is

the height of one pixel (in microns).
Draw Q Lines? Select or Deselect Sets wether or not to draw constant Q

lines on the screen.
Draw Q Lines

Color?

color Sets the color of the constant Q lines
that are displayed on top of the diffrac-
tion data and the caked data.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Draw dQ Lines? Select or Deselect Draw the delta Q lines on the diffrac-

tion image.
Draw dQ Lines

Color?

color Change the color of the delta Q lines
that are displayed on top of the diffrac-
tion data and the caked data.

Draw Peaks? Select or Deselect Display the fit peaks on the diffraction
and cake image.

Draw Peaks Color? color Change the color of the peaks that are
displayed on top of the diffraction data
and the caked data.

Update None Update the diffraction image.
Save Calibration Filename Saves the current calibration values in

the GUI as plaintext ASCII to a file.
Do Fit None Fit the calibration values to a loaded

diffraction image.
Make/Save Peak

List

Filename Creates a peak list just as happens
when doing the fit, but instead of acu-
tally doing the fit it saves the peaks as
an ASCII file for later use.

Use Old Peak List

(if possible)?

Select or Deselect Uses the previously found peak list
again when doing the fit.

Fit Number of Chi? Number The number of χ slices around the
diffraction image to pick and use when
doing the calibration.

Stddev Number The σ threshold for allowing a peak.
Diffraction Display Options

Diffraction Data

Colormaps

A color map name Select the color map to use for the
diffraction image.

Diffraction Data

Invert?

Select or Deselect Invert the color map that is being used
to display the diffraction data.

Diffraction Data

Log Scale?

Select or Deselect Take the log of all the data points be-
fore displaying them.

Diffraction Data

Low?

Number from 0 to 1 The normalized intensity value which
will be scaled to %0 of the image bright-
ness when displaying the diffraction im-
age.

Diffraction Data

Hi?

Number from 0 to 1 The normalized intensity value which
will be scaled to %100 of the image
brightness when displaying the diffrac-
tion image.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Save Diffraction

Image

Filename Save the diffraction image to a file (pos-
sibly including Q lines and peaks.

Masking Macro Commands
Do Less Than Mask? Select or Deselect Sets whether or not to apply a less than

mask to the diffraction data.
(Pixels Can’t Be)

Less Than Mask:

Number Sets the less than mask.

Less Than Mask

Color?

color Sets the color that all the less than
masked pixels are displayed as on the
diffraction image and caked image.

Do Greater Than

Mask?

Select or Deselect Sets whether or not to apply a greater
than mask to the diffraction data.

(Pixels Can’t Be)

Greater Than Mask:

Number Sets the greater than mask.

Greater Than Mask

Color?

color Sets the color that all the greater than
masked pixels are displayed as on the
diffraction image and caked image.

Do Polygon Mask? Select or Deselect Sets whether or not to apply polygon
masks to the diffraction data.

Polygon Mask

Color?

color Sets the color that all polygon masked
pixels should be displayed as on the
diffraction image and the cake image.

Save Mask Filename Saves all currently loaded or drawn
polygons as plain text ASCII to a file.

Load Mask Filename Loads into the program from some file
one or more polygons.

Clear Mask None Removes any polygon masks that are
in the program.

Cake Macro Commands
AutoCake None Make the computer pick a nice Q and

χ range and Cake the data.
Cake Q Lower? Number The lower Q value in the range ofQ and

χ to use when caking. If this command
is run while the program is in 2θ mode,
the program will switch to Q mode.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Cake Q Upper? Number The upper Q value in the range of Q

and χ to use when caking. of the caked
data. If this command is run while the
program is in 2θ mode, the program
will switch to Q mode.

Cake Number Of Q? Number The number of Q bins to use while cak-
ing the data. If this command is run
while the program is in 2θ mode, the
program will switch to Q mode.

Cake 2theta Lower? Number The lower 2θ value in the range of 2θ
and χ to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2θ
mode.

Cake 2theta Upper? Number The upper 2θ value in the range of 2θ
and χ to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2θ
mode.

Cake Number Of

2theta?

Number The number of 2θ bins to use while cak-
ing the data. If this command is run
while the program is in Q mode, the
program will switch to 2θ mode.

Cake Chi Lower? Number The lower χ value of the caked data.
Cake Chi Upper? Number The upper χ value of the caked data.
Cake Number Of

Chi?

Number The number of χ bins to use while cak-
ing the data.

Do Cake None Performs a cake of the data and dis-
plays that caked data in the cake win-
dow.

Last Cake None Go back to the previous cake values.
Save Caked Image Filename Saves the cake as a popular image for-

mat. The image will be saved as the
input filename and the extension of the
filename should tell the program what
format to save the image as.

Save Caked Data Filename Saves the cake as ASCII data with a
verbose header.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Cake Do

Polarization

Correction?

Select or Deselect Sets whether or not to use a polariza-
tion correction when caking the data.

Cake P? Number from 0 to 1 Sets the value of the polarization cor-
rection to use when caking the data.

Cake Display Options
Cake Data

Colormaps:

Color map Sets the color map to use when display-
ing the caked data.

Cake Data Invert? Select or Deselect Sets whether or not to invert the color
map when displaying the caked data.

Cake Data Log

Scale?

Select or Deselect Sets whether or not to use a log scale
when applying the color map to the
caked data.

Cake Data Low? Number from 0 to 1 The normalized intensity value which
will be scaled to %0 of the image bright-
ness when displaying the caked data.

Cake Data Hi? Number from 0 to 1 The normalized intensity value which
will be scaled to %100 of the image
brightness when displaying the caked
data.

Intensity Integration Macro Commands
Integrate Q Lower? Number The lower Q value to use when per-

forming an intensity integration. If the
command is run when program is in
2θ mode, the program will switch to Q
mode.

Integrate Q Upper? Number The upper Q value to use when per-
forming an intensity integration. If the
command is run when program is in
2θ mode, the program will switch to Q
mode.

Integrate Number

Of Q?

Number The number of Q bins to use when per-
forming an intensity integration. If the
command is run when program is in
2θ mode, the program will switch to Q
mode.

Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Integrate 2theta

Lower?

Number The lower 2θ value to use when per-
forming an intensity integration. If the
command is run when program is in Q
mode, the program will switch to 2θ
mode.

Integrate 2theta

Upper?

Number The upper 2θ value to use when per-
forming an intensity integration. If the
command is run when program is in Q
mode, the program will switch to 2θ
mode.

Integrate Number

Of 2theta?

Number The number of 2θ bins to use when per-
forming an intensity integration. If the
command is run when program is in Q
mode, the program will switch to 2θ
mode.

Integrate Chi

Lower?

Number The lower χ value to use when perform-
ing an intensity integration.

Integrate Chi

Upper?

Number The upper χ value to use when per-
forming an intensity integration.

Integrate Number

Of Chi?

Number The number of χ bins to use when per-
forming an intensity integration.

Integrate Q-I None Performs a Q − I integration of the
diffraction data. If the command is run
when the program is in 2θ mode, the
program will switch to Q mode.

AutoIntegrate Q-I None Picks a good range ofQ values and then
does the same thing as the Integrate

Q-I command.
Integrate 2theta-I None Performs a 2θ − I integration of the

diffraction data. If the command is run
when the program is in Q mode, the
program will switch to 2θ mode.

AutoIntegrate

2theta-I

None Picks a good range of 2θ values and
then does the same thing as the
Integrate 2theta-I command.

Integrate chi-I None Performs a χ − I integration of the
diffraction data.

AutoIntegrate

chi-I

None Picks a good range of χ values and then
does the same thing as the Integrate

chi-I command.
Continued on next page. . .
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Table 15.1 – continued from previous page

Command Followed By Effect
Save Integration

Data

Filename Saves out the intensity integrated data
as two column plain text ASCII with
the given filename.

Constrain With

Range On Right?

Select or Deselect Sets whether or not to apply a con-
straint to the Q or 2θ vs. I integration
so that the integration is only done of
pixels who’s χ value is within the χ in-
tegration range.

Constrain With

Range On Left?

Select or Deselect Sets whether or not to apply a con-
straint to the χ vs I integration so that
the integration is only done of pixels
who’s Q (or 2θ) value is within the Q
(or 2θ) integration range.

Integrate Do

Polarization

Correction?

Select or Deselect Sets whether or not to use a polariza-
tion correction when performing an in-
tensity integration.

Integrate P? Number form 0 to 1 sets the value of the polarization cor-
rection to use when performing an in-
tensity integration.

Integration Data

Log Scale?

Select or Deselect Sets whether or not to use a log scale
when displaying the diffraction data.

15.11 What You Can’t Do With Macros

Just to be clear:

• There is no way with a macro to zoom into the diffraction data, the cake data, or the
intensity integrated data

• You can’t draw individual polygon masks and you can’t remove individual polygon
masks. All you can do is load in polygon’s from file and save all the current polygons
to a file.

• When you load in multiple images at once by giving a file name, it will only load in
images from the file with known extensions (ie .mar2300, .mar3450, .mccd, .tiff). So
give your files proper extensions before running macros.
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Chapter 16

Software Licensing

This program is released under the GNU General Public License (GPL) version 2. The
license can e found at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. For
the most part, you are free to use and distribute this software. You are free to make any
modifications to the code under the condition that any modifications are clearly stated and
that the modificates are are released under the GPL version 2.

This software manual is also licensed under the GPL. This is a bit unconvential. I decided
to do so after reading several discussions online. Following Nathanael Nerode’s article Why
You Shouldn’t Use the GNU FDL, I include in this paper the clause “for the purpose of
applying the GPL to this document, I consider ‘source code’ to refer to the texinfo source
and ‘object code’ to refer to the generated info, tex, dvi, [pdf] and postscript files.”[9]

This program uses the software package levmar for performing Levenberg-Marquardt
nonlinear least squares minimization. It is released under the GPL. That package can be
found at http://www.ics.forth.gr/~lourakis/levmar/.[6]

This program uses the function get pck() from the CCP4 package DiffractionImage to
uncompress Mar data. It written by Dr. Claudio Klein.[4] This prgoram also uses the file
marccd header.h form the DiffractionImage packate. It released under the GPL and can be
found at http://www.ccp4.ac.uk/ccp4bin/viewcvs/ccp4/lib/DiffractionImage/.[2]

This program uses the EdfFile library (EdfFile.py) for reading and writing files of the
ESRF Data Format. It is is part of the PyMCA library and is licensed under the GNU GPL
version 2.[12]

This program also uses W. Randolph Frankin’s pnpoly() function for performing a
point inclusion in polygon test. This code can be found at http://www.ecse.rpi.edu/

Homepages/wrf/Research/Short_Notes/pnpoly.html We are in compliance with his soft-
ware license which is reproduced below[3]:

Copyright (c) 1970-2003, Wm. Randolph Franklin

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
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and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimers. Redistributions in binary form must
reproduce the above copyright notice in the documentation and/or other materials
provided with the distribution. The name of W. Randolph Franklin may not be
used to endorse or promote products derived from this Software without specific
prior written permission. THE SOFTWARE IS PROVIDED “AS IS”, WITH-
OUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LI-
ABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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Plan Exams
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Chapter 17

Comprehensive Exam, part 1 -

Covers: basic physics, special

relativity, classical mechanics

17.1 Problem

“A solid spherical ball of uniform mass density (e.g., a pool ball) rolls without
slipping down a ramp which makes angle θ with the horizontal. (a) What is its
translational acceleration down the ramp? (b) If the coefficient of friction between
the ball and the surface is µ = 0.1, for what value of θ will the ball slip rather
than roll without slipping?” – Travis Norsen

W

N

Ff
r

θ

Figure 17.1: The Ramp.

Figure 17.1 shows a free body diagram of this situation. Since we are dealing with a pool
ball, ICM = 2

5
mr2. I will calculate the torque about the contact point between the ball and

the ground.

τ =
∑

r × F . (17.1)
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About this point, the only force applying a torque is the weight force:

τ = rmg sin θ. (17.2)

We can use the parallel axis theorem to calculate the moment of inertia of the ball about
the contact point:

I = 2
5
mr2 +mr2 = 7

5
mr2 (17.3)

The linear acceleration is related to the angular acceleration of the ball about the contact
point by a = rα. We can use τ = Iα to calculate a:

Iα = 7
5
mr2 × a

r
= rmg sin θ. (17.4)

We get
a = 5

7
g sin θ (17.5)

To figure out part (b), we can apply F = ma to our free body diagram. We first do the
direction parallel to the ramp:

ma = mg sin θ − Ff (17.6)

We know that the ball will just have slipped (or be about to slip) when the force of friction
just counteracts the downward pull of gravity and a = 0:

Ff = mg sin θ. (17.7)

Doing the direction perpendicular to the ramp gets us:

N = mg cos θ (17.8)

Since
Ff ≤ µN, (17.9)

we know that
mg sin θ ≤ µmg cos θ. (17.10)

Or,
tan θ ≤ µ. (17.11)

The largest value of θ is
tan θ = µ. (17.12)

17.2 Problem

“A planet orbits the sun under the influence of the gravitational force

F =
GMm

r2
(17.13)
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Suppose the planet has orbital angular momentum L. Write down an expression
for the effective potential energy (i.e., the gravitational potential energy plus the
term from the kinetic energy associated with the angular motion), and find the
value of r (call it R) for which the effective potential is minimized. What does
it mean physically if r(t) = R? What is the period of the orbit? Now consider
small oscillations of r about R. Approximate the effective potential near r = R
as a parabola, and find the resulting period of small oscillations. Sketch the shape
of a not-quite-circular orbit. Is it what you expect?” – Travis Norsen

The potential of the system is

U(r) = −k
r

(17.14)

With k = GMm. We can write the total energy (or Hamiltonial) of the system as

H = 1
2
m|rm|2 + 1

2
M |rM |2 + U(|rm − rM |) (17.15)

If we let r = rm − rM and change to a coordinate system where the center of the system is
the center of mass, than

mrm +MrM = 0. (17.16)

From this, it follows that

rm =
M

m+M
r (17.17)

rM = − m

m+M
r. (17.18)

Plug these back into equation 17.15 gets us

H = 1
2
µ|ṙ|2 + U(r). (17.19)

With µ = mM/(m+M). This is the equation of just one particle with mass µ in the same
potential. We can treat this two body system as though it were a one body system where
the one particle has the reduced mass. Writing ṙ in spherical coordinates gets us

ṙ = ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂. (17.20)

Since we are dealing with a central force, we can without loss of generality assume that all
motion takes place in a plane such that φ = 0 and so that there is no φ̂ component to the
velocity. When we do so, we get

ṙ = ṙr̂ + rθ̇θ̂ (17.21)

Our Hamiltonian becomes

H = 1
2
µv2 + U(r) = 1

2
µ(ṙ2 + r2θ̇2) + U(r). (17.22)
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Since angular momentum is conserved:

L = µr × v = µ = µr2θ̇φ̂ = Lφ̂ (17.23)

where in the last step we used equation17.21. Since φ = 0, we have φ = constant as is
necessary for angular momentum to be conserved. Thus,

L = µr2θ̇. (17.24)

Plug this into equation 17.22 get us

H = 1
2
µṙ2 +

(

L2

2µr2
+ U(r)

)

(17.25)

This is the equation of a particle in one dimensions in the effective potential

V eff =
L2

2µr2
+ U(r) = − k

r0
+

L2

2µr2
(17.26)

The potential is minimized at r0 when

dV eff

dr

∣

∣

∣

r0

= 0 (17.27)

Or,
k

r2
0

− L2

µr3
0

= 0 (17.28)

so

r0 =
L2

kµ
. (17.29)

When the potential is at a minimum, the particle experience no radial force. This means
that the particle undergoes uniform circular motion.

Next, we can calculate the velocity using equation 17.24. Since v = θ̇r, we have

L = µr2
0θ̇ = µr0v (17.30)

Or,

v =
L

µr0
=
k

L
(17.31)

The period is

T =
2πr0
v

=
2πL3

k2µ
(17.32)

We can Taylor expand V (r) around r0. This will be a good approximation for radii near r0.
First:

V (r0) = −k
(

µk

L2

)

+
L2

2µ

(

µk

L2

)2

= −1

2

µk2

L2
(17.33)
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Next:
d2V (r0)

dr2
= −2k

r3
0

+
3L2

µr4
0

=
k4µ3

L6
(17.34)

Thus:

V eff(r) ≈ µk2

2L2
+
k4µ3

2L6
∆r2 (17.35)

with ∆r = r − r0. We know that

F = µr̈ = µ∆r̈ = −dV
eff

dr
= − dV eff

d(∆r)
= −k

4µ2

L6
∆r (17.36)

We can solve for ∆r gets

∆r = A sin

(

k2µ

L3
t

)

(17.37)

This has a period of

T = 2π
L3

k2µ
. (17.38)

This is exactly the same as equation 17.32, the period of orbit. When we plot r = r0 + ∆r,
the perturbed potential, the trajectory looks something like my diagram in figure 17.2. This
trajectory looks like an ellipse, just as expected.

Sun

1AU

r

Figure 17.2: A diagram of the
path of the perturbed orbit.
Note that it roughly looks like a
very circular ellipse with the sun
at one focii.

17.3 Problem

“Alice and Bob are at opposite ends of a spaceship whose rest length L = 20cs
(i.e., twenty light seconds). They have previously synchronized their watches.
When her watch reads noon, Alice rolls a ball to the right, toward Bob, at speed
u = 4/5c. The ball moves at constant speed until Bob catches it. The question is:
what does Bobs watch read at the moment he catches the ball? The trick is: you
have to answer by working it out entirely from the frame of reference of Charlie,
for whom the spaceship is moving to the right at speed v = 3/5c. (Hint: what
does Bobs watch read when Alice rolls the ball? How long does it take the ball to
get to him?)” – Travis Norsen
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t

L

u

C

BA

Event 1

Event 2

t = 0

t

t = 0

−v

Figure 17.3: A space time diagram of the reference frame where the rocket is at rest

Figure 17.3 shows a space time diagram of this situation as viewed from the rocket rest
frame. We will call this the unprimed reference frame. The problem is easy to solve in this
frame. Alice’s and Bob’s clock are synchronized in this frame. If the ball leaves Alice at
t = 0, it will travel a distance L at velocity u at arrive at Bob at a time

t = l/u (17.39)

Using your numbers, we see that t = 25s from which it follows that Bob’s clock will read
25s after 12 o’clock (which I am calling t = 0. We can analyze this whole situation instead

t′

L′

u′

C
BA

Event 1

Event 2

t′ = 0, t = 0 t′ = 0, t = −Lv/c2

t′, t
v

v

Figure 17.4: A space time diagram of the reference frame where the rocket is moving to the
right with velocity v

from a reference frame where Charlie is at rest. A space time diagram for this situation is
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shown in figure 17.4. This will be the primed reference frame. The distance between Alice
and Bob will be contracted

L′ = L
√

1 − v2/c2. (17.40)

Remember that moving meter sticks shrink. Also, Bob’s clock will read a time earlier than
Alice’s clock. I think the saying is leading clocks lag. According to Charlie, When Alice’s
clock reads t = 0 Bob’s clock will will say

t = −Lv
c2
. (17.41)

Finally, the velocity of the ball, as measured from Charlie’s frame has to be corrected.
The relationship between the velocities is calculated using the relativistic velocity addition
formula

u′ =
u+ v

1 + uv/c2
. (17.42)

We will call the time interval between Bob’s clock when the ball leaves Alice and when it
arriving at Bob as measured in Charlie’s reference frame as t′. We can calculate it by setting
the position of the ball equal to the position of Bob and solving for time:

u′t′ = L′ + vt′ (17.43)
(

u+ v

1 + uv/c2

)

t′ = L
√

1 − v2/c2 + vt′ (17.44)

t′ =
L

u

(1 + uv/c2)
√

1 − v2/c2
(17.45)

We will call this same time interval as measured by Bob’s clock t. Bob’s clock is moving
slow because Moving clocks run slow. The reason why we know that Bob’s clock is the one
that is moving in this situation is because what t is a time interval between is Bob’s clock
when the ball leaves Alice (as viewed in Charlie’s frame) and Bob’s clock when the ball gets
to Bob. Since Bob is present at both these events, he measures the proper time interval
between these two events. We can thus use the formula

∆(proper) = ∆(improper)
√

1 − v2/c2 (17.46)

to show that

t = t′
√

1 − v2/c2 (17.47)

t =
L

u

(

1 +
uv

c2

)

(17.48)

If Bob’s clock initially reads -Lv/c and the time interval is t, the time that Bob’s clock will
reads when the ball gets to him is

− Lv

c2
+
L

u

(

1 +
uv

c2

)

=
L

u
(17.49)

This is just what we need!
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17.4 Problem

“The point of suspension of a pendulum (mass m, length L) is allowed to move
in the horizontal direction. It (the point of suspension) is connected to a spring
which exerts a restoring force F = kx. (a) Use the coordinates x (the displace-
ment of the point of support) and θ (the angular displacement of the pendulum bob
from vertical) to write the Lagrangian and the equations of motion. (b) Linearize
the equations of motion by assuming small oscillations; what length would an or-
dinary simple pendulum need to have in order to oscillate at the same frequency
as the one here?” – Travis Norsen

Figure 17.5: A diagram of the
physical setup.

θ

x

L|y′|

x′

If we call (x′, y′) the spacial coordinate of pendulum bob, we can write these coordinates
as

x′ = x+ L sin θ (17.50)

y′ = −L cos θ (17.51)

where x is the displacement of the spring and θ is the angle swept out by the spring (see
figure 17.5). We can write the Lagrangian as:

L = T − U (17.52)

= 1
2
m(ẋ′2 + ẏ′2) −mgy′ − 1

2
x2 (17.53)

= 1
2
m(ẋ2 + 2Lẋθ̇ cos θ + L2θ̇2) +mgL cos θ − 1

2
kx2 (17.54)

The equations of motion are

∂L

∂θ
− d

dt

(

∂L

∂θ̇

)

= 0 (17.55)

∂L

∂x
− d

dt

(

∂L

∂ẋ

)

= 0 (17.56)
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Plugging into the first equation gets

−mLẋθ̇ sin θ −mgL sin θ − d

dt

(

mLẋ cos θ +mL2θ̇
)

= 0. (17.57)

This simplifies to

− g

L
sin θ − ẍ

L
cos θ − θ̈ = 0. (17.58)

Note that this reduces when x = 0 to the equation of state for a regular pendulum. Plugging
into the second equation gets

− kx− d

dt

(

mẋ+mLθ̇ cos θ
)

= 0. (17.59)

This becomes
− kx−mẍ−mLθ̈ cos θ +mLθ̇2 sin θ = 0. (17.60)

This equation reduces when θ = 0 to the equation of state for a regular spring. We can
take a small angle limit by letting cos θ → 1 and sin θ → θ. When we do this, our equations
become

− g

L
θ − ẍ

L
− θ̈ = 0 (17.61)

− k

m
x− Lθ̈ + Lθ̇2θ − ẍ = 0 (17.62)

It is not at all clear to me what I am supposed to do to these equations to make the angle
dependence took like a simple harmonic oscillator, so I am not sure now to figure out the
frequency of oscillations.. . .

17.5 Problem

“A bucket full of water rotates at uniform angular velocity ω. It is near the
surface of the earth, so there’s a uniform downward field g. What shape does the
surface of the water make? Be as specific as you can” – Travis Norsen

We can assume that the bucket has been rotating for a sufficiently long time that the
water will all be rotating along with the bucket at constant angular velocity. We can also
assume that the system has been rotating long enough that it has come to equilibrium.
Figure 17.6 shows a free body diagram for a small chunk of water on the very surface of the
bucket. It experiences two forces: gravity and a normal force from the rest of the water. We
know that the particle is not moving up or down so

∑

Fy = 0. (17.63)

We know that it is experiencing uniform circular motion, so
∑

Fx = mrω2. (17.64)
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Figure 17.6: A free body diagram of a
bucket rotating with angular velocity ω.
The free body diagram is of some small
chunk of water a distance r from the axis of
rotation. There are only two forces acting
on the chunk of water.

N

W

θ
θ

∆r

∆y

y0

r

y(r)

From equation 17.63, we see that
N sin θ = W. (17.65)

From equation 17.64, we see that

N cos θ = mrω2. (17.66)

Dividing gets

tan θ =
g

rω2
(17.67)

We can read from the diagram that

tan θ =
∆r

∆y
=
dr

dy
(17.68)

We can combined these equations to get

dr

dy
=

g

rω2
(17.69)

dy =
ω2

g
rdr. (17.70)

Integrating gets us

y = y0 +
1

2

w2

g
r2. (17.71)

where y0 is the height of the water at the axis of rotation. We see that this is the equation
of a parabola. I think that this means the surface area will be a paraboloid.
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Chapter 18

Comprehensive Exam, part 2 -

Covers: E&M, Electrodynamics,

Circuits and Optics

18.1 Problem

“A charge +Q is distributed uniformly along the z axis from z = a to z = +a.
Find an exact expression for the electrostatic potential for points along the z axis
(with z > a). Then use this to write an approximate expression for the potential
at a point (r, θ) not (necessarily) on the z axis. The approximation should be a
power series expansion in a/r and should be accurate to fourth order in a/r.” þ

z′ = −a z′ = az′ = 0
ẑ

z

z′ dz′ Figure 18.1: A rod.

We can calculate the potential due to the small bit of charge shown in figure 18.1.

dV =
1

4πǫ0

λdz′

z − z′
(18.1)

Integrating over all of the rod gets us the total potential

V (z) =
1

4πǫ0

∫ a

−a

λdz′

z − z′
(18.2)

=
λ

4πǫ0

(

− log(z − z′)|a−a

)

(18.3)

=
λ

4πǫ0
log

(

z + a

z − a

)

(18.4)
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This expression is valid for z > a. Of course, for z < a, we have charge immediately at our
point so our potential function would be infinite. If we let u = a/z, we have

V =
λ

4πǫ0
log

(

1 + u

1 − u

)

(18.5)

We can expand V in powers of u around u = 0. To do so, we have to calculate a whole
bunch of derivatives. Let

f(u) = log

(

1 + u

1 − u

)

(18.6)

Then,

f(0) = 0 (18.7)

Next, we calculate

f ′(u) =
1

(

1+u
1−u

)

(

(1 − u) − (1 + u)(−1)

(1 − u)2

)

(18.8)

=
2

(1 + u)(1 − u)
(18.9)

f ′(0) = 2. (18.10)

(18.11)

Then we calculate

f ′′(u) =
2(−1)(−(1 + u) + (1 − u))

(1 + u)2(1 − u)2
(18.12)

=
4u

(1 + u)2(1 − u)2
(18.13)

f ′′(0) = 2. (18.14)

(18.15)

Then we calculate

f ′′′(u) =
4

(1 + u)2(1 − u)2
+

4u(−2)(−(1 + u) + (1 − u))

(1 + u)3(1 − u)3
(18.16)

=
12u2 + 4

(1 + u)3(1 − u)3
(18.17)

f ′′′(0) = 4. (18.18)

(18.19)
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Then we calculate

f ′′′′(u) =
(1 + u)3(1 − u)324u− (12u2 + 4)3(1 + u)2(1 − u)2(−2u)

(1 + u)6(1 − u)6
(18.20)

=
48u(1 + u2)

(1 + u)4(1 − u)4
(18.21)

f ′′′′(0) = 0. (18.22)

(18.23)

Then we calculate

f ′′′′′(u) = 48

(

(1 + u)4(1 − u)4(1 + u2 + u(2u)) − u(1 + u2)4(1 + u)3(1 − u)3(−2u)

(1 + u)8(1 − u)8

)

(18.24)

= 48
5u4 + 10u2 + 1

(1 + u)5(1 − u)5
(18.25)

f ′′′′′(0) = 48. (18.26)

We can now do the expansion

V (z) =
λ

4πǫ0
f(u) (18.27)

=
λ

4πǫ0

(

f(0) + f ′(0)u+
f ′′(0)

2!
u2 +

f ′′′(0)

3!
u3 +

f ′′′′(0)

4!
u4 +

f ′′′′′(0)

5!
u5 + . . .

)

(18.28)

=
λ

4πǫ0

(

2u+
4

3!
u2 +

48

5!
u4 + . . .

)

(18.29)

=
Q

4πǫ0

1

z

(

1 +
1

3

(a

z

)2 1

5

(a

z

)4
)

(18.30)

Where in the last step we use the fact that Q = 2λa. Finally, we can write the potential due
to this charge distribution at any arbitrary point as the expansion of Legendre polynomials:

V (r, θ) =
∞
∑

l=0

(

Alr
l +

Bl

rl+1

)

Pl(cos θ) (18.31)

Note that this expansion was derived with the assumption of azimuthal symmetry, which is
valid in this situation. Since V → 0 as r → ∞, we have Al = 0:

V (r, θ) =

∞
∑

l=0

(

Bl

rl+1

)

Pl(cos θ) (18.32)

We can consider the special case of θ = 0. We exploit the special property that Pl(cos 0) =
Pl(1) = 1. Since z = r cos θ, r = z when θ = 0. Thus,

V (r = z, 0) =
B0

r
+
B1

r2
+
B2

r3
+
B3

r4
+
B4

r5
+ . . . (18.33)
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By examining our Taylor expansion for the potential on the z axis, we recognize that

B0 =
Q

4πǫ0
(18.34)

B1 = 0 (18.35)

B2 =
Q

4πǫ0

a2

3
(18.36)

B3 = 0 (18.37)

B4 =
Q

4πǫ0

a4

5
(18.38)

(18.39)

So,

V (r, θ) =
Q

4πǫ0

1

r

(

P0(cos θ) +
1

3

(a

z

)2

P2(cos θ) +
1

5

(a

z

)4

P4(cos θ) + . . .

)

(18.40)

18.2 Problem

“A long coaxial cable is made from two conducting cylindrical shells of radius a
and b. (The space between them is empty.) At one end of the cable, the inner
conductor is attached to the positive terminal of a battery (potential +V ); the
outer conductor is attached to the negative terminal (potential zero). At the other
end of the cable, the two conductors are connected through a resistor (resistance
R). Note that the inner conductor will have some charge per unit length, and
will also have some current flowing through it. Find the electric field in the cable
for a < r < b. Then find the magnetic field in the cable for a < r < b. Then find
the Poynting vector for a < r < b. Then integrate to find the total rate at which
electromagnetic field energy flows along the cable. Finally, say something about
where this energy comes from and where its headed.” ¥

The current can be calculated as I = V/R. The voltage across the resistor falls off linearly.
The reason why we know this is because resistors are made up out of linear materials so that
the amount of resistance is proportional to the length of the resistor. We could think of
dividing up the resistor into two parts, as is shown in figure 18.3. The resistances shown on
the two parts of the resistor in the figure are linear as desired. Since the voltage at a is V ,
the voltage at s will then have decreased by the voltage times the resistance:

V (s) = V − I

(

s− a

b− a
R

)

(18.41)

=
b− s

b− a
V (18.42)

If you notice, this is the linear decrease that I stated above. Now, what we are interested in
is the voltage everywhere inside the cylinders constrained by the boundary conditions:
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a b

V = 0
V = +V

I z = 0

R

ŝ

φ̂

ẑ
I

Figure 18.2: Two cylinders connected by
a resistor. The sketchy dashed line is an
Amperian surface that we will use later.

a
s
b

s−a
b−a

R b−s
b−a

R

Figure 18.3: We can imagine divid-
ing the resistor into two smaller re-
sistors. This is used to calculate the
voltage at some point in the middle
of the resistor.

• V = +V for x = a.

• V = 0 for x = b.

• V (s) = b−s
b−a

V across the resistor for a ≤ s ≤ b.

Of course, one obvious solution to Laplace’s equation for these boundary conditions is

V (s) =
b− s

b− a
V (18.43)

for a ≤ s ≤ b. By the 1st uniqueness theorem from Griffith’s book, we know that this must
be the only unique solution for the potential.

We can calculate the electric field as

E = −∇V = −∂V
∂s

ŝ =
V

b− s
ŝ. (18.44)

163



To calculate the magnetic field, we can draw an Amperian loop with radius a ≤ s ≤ b around
the first cylinder. This is the silly dashed line in figure 18.2. We use Ampère’s law:

∮

B · dl = µ0Iend. (18.45)

This gets us

B =
µ0I

2πs
. (18.46)

Using the rule where you put your thumb in the direction of the current and your fingers
curl in the direction of the magnetic field, we get

B = −µ0I

2πs
φ̂ (18.47)

We can now calculate the Poynting vector, which is the energy per unit time per unit area
that flows in some direction.

S =
1

µ0
(E × B) (18.48)

=
1

µ0

(

V

b− a

)(

µ0I

2πs

)

ŝ× (−φ̂) (18.49)

= − V

b− a

I

2πs
ẑ (18.50)

We can calculate the total energy flowing down the area between the cylinder per unit time:

dE

dt
=

∫

S

S · da =

∫ 2π

0

∫ b

a

IV

2πs(b− a)
sdsdφ = IV = I2R (18.51)

This means that energy I2R per unit time is carried by the field down the cylinder. This
energy must be taken to the resistor and dissipated as Joule eating. The energy is used to
heat up the resistor.

18.3 Problem

“An AC voltage source (amplitude V0, angular frequency ω) drives a circuit con-
sisting of a resistor (R) in series with a capacitor (C). What is the amplitude
of the voltage across the resistor? Describe qualitatively what will happen (i.e.,
what it will sound like) if the voltage source is replaced by a radio and the resistor
is replaced by a speaker.” ÿ

kirchoff’s Law gives us the equation we need:

V0e
iωt − Q

C
− IR = 0 (18.52)

CV0e
iωt −Q−Q′RC = 0 (18.53)

(18.54)
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We guess a solution of the form
Q = keiωt (18.55)

with k some constant. Plugging in gets us we get

CV0e
iωt − keiωt − iωkeiωtRC = 0 (18.56)

CV0 − k(1 + iωRC) = 0k =
CV0

1 + iωRC
(18.57)

Thus,

I =
iωCV0

1 + iωRC
eiωt =

V0

1
iωC

+R
eiωt (18.58)

The voltage drop across the resistor is:

V = IR =
V0R

1
iωC

+R
eiωt (18.59)

The formula shows that there is a larger voltage drop across the resistor for larger angular
frequency.

Suppose the voltage source was replaced by a radio and the resistor by a speaker. The
radio would output a signal with many different frequencies. The radio would make a sound
of each particular frequency proportional to the voltage drop across it for that particular
frequency. Since our circuit is set up so that the voltage drop across the speaker is bigger for
larger frequencies, our speaker would preferentially play high frequency sound. We would
hear the radio with a bias towards the high frequencies. I think this circuit is called a high
pass filter.

By the way, the derivation would have been much easier if I used impedance, but I
couldn’t remember exactly how to calculate it and I didn’t have my Optics book.

18.4 Problem

“ Finn has a toy magnifying glass designed to look at bugs. Its a cylinder whose
bottom is a platform where you can put a bug, and whose top is a converging lens.
With the cylinder sitting on a table, you can then look down from above and see
a magnified image of the bug through the lens. Suppose the focal length of the
lens is 10cm, and the platform where the bugs sit is 5cm behind the lens. Draw
a diagram showing the primary rays and indicating the size and location of the
image that is seen. If Finn puts his eye a distance d above the lens, what is the
magnification? What range of magnifications is possible? How could the device
be modified to achieve greater magnification?” h

Figure 18.4 shows an optics digram of the toy with the primary rays.1. Note that f
labeled in the diagram is the focal length. We have d = 5 cm and f = 10 cm Using similar

1Travis, I think figured out the hint that you were getting at. I figured out the diagram on my own.
Afterwards, I went to the Wikipedia page on convex lenses and saw the same diagram. But I came up with
all of this work before going there
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d

a

f

h
l

Figure 18.4: The bug, the lens, and the virtual image. Eeew, bugs!

triangles
l

a
=
h

d
(18.60)

and
l

a + f
=
h

f
. (18.61)

So,

a =
d

h
× l (18.62)

and

l
d
h
l + f

=
h

f
(18.63)

l =
d

f
× l + h (18.64)

l

(

1 − d

f

)

= h. (18.65)

I believe that we define the magnification M as

M ≡ l

h
. (18.66)

Finally,

M =
1

1 − d
f

. (18.67)

Since d/f = 1/2, we have M = 2. I don’t think there is any range to the magnification
(is this a trick question?) We could increase the magnification by increasing d/f either by
increasing the distance between the bug and the lens or by decreasing the focal length.
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18.5 Problem

“Find the transmission coefficient for light waves passing through a pane of glass,
of thickness d, at normal incidence. Hints: To the left, there is an incident wave
and a reflected wave; to the right there is a transmitted wave only; inside the
glass there is a wave going to the right and a wave going to the left. Express each
of these waves in terms of its complex amplitude, and relate the amplitudes by
imposing suitable boundary conditions at the two edges. Neglect dispersion and
assume µ = µ0. It is simplest to characterize the light by its wave number in the
glass. (This is problem 8.39 in Griffiths E& M, 2nd ed.) Note the similarity to
a certain standard modern physics type of problem (reflection/transmission from
a rectangular potential barrier with “height” V0 ). Does the example here with
light correspond to E > V0 or E < V0? Is there an analog with light for the other
case, too?” m

z = 0 z = d

glass

ẑ

x̂

ŷ

EI

BI

c
ET

BT

c

ER

c
BR

EMR

BMR
v

v
EMT

BMT

Figure 18.5: This figure shows
the glass barrier and the ori-
entation of the waves in the
three sections. This whole setup
is very similar to the example
in Griffith’s book called Reflec-
tion and Transmission at Nor-
mal Incidence.

There is an incident and reflected wave to the left of the glass. There is also an incident
and reflected wave in the glass. There is only a transmitted wave to the right of the glass.
This is shown in figure 18.5. Outside the glass, the waves travel with velocity c and wave
vector k. Inside the glass, the waves travel with velocity v = c/n and wave vector κ = nk
(since the angular frequency ω is the same inside and outside so kc = ω = κv). Thus, the
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incoming and reflected waves are:

EI = Ẽ0Ie
i(kz−ωt)x̂ (18.68)

BI =
1

c
Ẽ0Ie

i(kz−ωt)ŷ (18.69)

ER = Ẽ0Re
i(−kz−ωt)x̂ (18.70)

BR = −1

c
Ẽ0Re

i(−kz−ωt)ŷ. (18.71)

Inside the glass, we have

EMT = Ẽ0MT e
i(κz−ωt)x̂ (18.72)

BMT =
n

c
Ẽ0MT e

i(κz−ωt)ŷ (18.73)

EMR = Ẽ0MRe
i(−κz−ωt)x̂ (18.74)

BMR = −n
c
Ẽ0MRe

i(−κz−ωt)ŷ. (18.75)

The transmitted wave is

ET = Ẽ0T e
i(kz−ωt)x̂ (18.76)

BT =
1

c
Ẽ0T e

i(kz−ωt)ŷ. (18.77)

Since we are assuming that µair = µglass, our boundary conditions are:

E
//
left|z=0 = E

//
middle|z=0 (18.78)

B
//
left|z=0 = B

//
middle|z=0 (18.79)

E
//
middle|z=d = E

//
right|z=d (18.80)

B
//
middle|z=d = B

//
right|z=d (18.81)

with Eleft = EI + ER and Emiddle = EMR + EMT and Eright = ET . Pluggin’ in:

ẼOI + ẼOR = Ẽ0MT + ẼOMR (18.82)
1
c
ẼOI − 1

c
ẼOR = n

c
Ẽ0MT − n

c
ẼOMR (18.83)

And:

Ẽ0MT e
iκd + ẼOMRe

−iκd = Ẽ0T e
ikd (18.84)

n
c
Ẽ0MT e

iκd − n
c
ẼOMRe

−iκd = 1
c
Ẽ0T e

ikd (18.85)

We want to calculate

R =

∣

∣

∣

∣

E0R

E0I

∣

∣

∣

∣

2

(18.86)
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and

T =

∣

∣

∣

∣

E0T

E0I

∣

∣

∣

∣

2

(18.87)

Remember that since the medium that E0T is in is the same as the medium that E0I is in,
there are no constants in the front of the T term. Using equation 18.82 and 18.83, we get

ẼOI =
1 + n

2
Ẽ0MT +

1 − n

2
Ẽ0MR (18.88)

ẼOR =
1 − n

2
Ẽ0MT +

1 + n

2
Ẽ0MR (18.89)

(18.90)

Using equation 18.84 and 18.85, we get

ẼOMT =
1

2
× 1 + n

n
Ẽ0T

eikd

eiκd
(18.91)

ẼOMR =
1

2
× n− 1

n
Ẽ0T

eikd

e−iκd
(18.92)

From this, we get

ẼOI =

(

(n+ 1)2

4n

eikd

eiκd
− (n− 1)2

4n

eikd

e−iκd

)

Ẽ0T (18.93)

After doing some math, we get

T =
16n2

(n+ 1)4 + (n− 1)4 − 2(n+ 1)2(n− 1)2 cos(2κd)
(18.94)

=
16κ2k2

(κ+ k)4 + (κ− k)4 − 2(κ+ k)2(κ− k)2 cos(2κd)
. (18.95)

I calculated that

lim
d→0

T = 1, (18.96)

as is needed. We can now calculate R in just the same way:

Ẽ0R =
1 − n

2

(

1

2
× 1 + n

n
Ẽ0T

eikd

eiκd

)

+
1 + n

2

(

1

2
× n− 1

n
Ẽ0T

eikd

e−iκd

)

(18.97)

Simplifying a bit, this becomes:

Ẽ0R =
n2 − 1

4n
(−2i) sin(κd)ẼOT (18.98)
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From which we calculate that

R =

∣

∣

∣

∣

E0R

E0I

∣

∣

∣

∣

2

=

∣

∣

∣

∣

E0R

E0T

∣

∣

∣

∣

2 ∣
∣

∣

∣

E0T

E0I

∣

∣

∣

∣

2

(18.99)

=
4(n2 − 1)2 sin2(κd)

(n+ 1)4 + (n− 1)4 − 2(n+ 1)2(n− 1)2 cos(2κd)
(18.100)

=
2(1 − cos(2κd)

(

κ+k
κ−k

)2
+
(

κ−k
κ+k

)2 − 2 cos(2κd)
(18.101)

By working it out, I showed that

lim
d→0

R = 0 (18.102)

I will save you the tedious algebra, but suffice it to note that I worked through all the math
and T +R = 1, as is required.

I believe that this example corresponds to E > V scattering since most of the light goes
through the glass and is transmitted (just as how for E > V most of the light is transmitted.
I don’t think there is an optical analog for an E < V barrier.

18.6 Problem

“A circular coil of wire (radius R) carries current I and lies in the x − y plane
with its center at the origin. (So the z-axis is its symmetry axis.) Find an exact
expression for the strength of the magnetic field along the z axis. Now: a second
identical coil (parallel to the first) is to be placed with its center at z = d. It is
desired to make the magnetic field in the region near the center of the coils (i.e.,
near z = d/2) as uniform as possible. Find the value of d which accomplishes
this.” …

Figure 18.6 R

z r

dB

dl′

θ

θ

B
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Figure 18.6 shows the physical setup. Biot-Savart’s Law tells us that

B(r) =
µ0I

4π

∫

dl′ × r̂

r2
(18.103)

Since the different parts of the coil have their x-y components of the magnetic field cancel
out, we have

B(r) = B(z)ẑ (18.104)

We can solve Biot-Savart’s equation:

B(z) =
µ0I

4π

∫

dl′ cos θ

r2
(18.105)

=
µ0I

4π

cos θ

r2
× 2πR (18.106)

=
µ0IR

2

2

1

(R2 + z2)3/2
(18.107)

Notice that even for z < 0, the field points up! If we put another coil at a height d, the
magnetic field for 0 ≤ z ≤ d is

B(z) =
µ0IR

2

2

(

1

(R2 + z2)3/2
+

1

(R2 + (d− z)2)3/2

)

(18.108)

We calculate
∂B

∂z
=
µ0IR

2

2

(

− 3z

(R2 + z2)5/2
+

3(d− z)

(R2 + (d− z)2)5/2

)

(18.109)

And

∂2B

∂z2
=
µ0IR

2

2

(

− 3

(R2 + z2)5/2
+

15z2

(R2 + z2)7/2

− 3

(R2 + (d− z)2)5/2
+

15(d− z)2

(R2 + (d− z)2)7/2

)

(18.110)

Note that
∂B

∂z

∣

∣

∣

∣

z=
d
2

= 0 (18.111)

So we will set
∂2B

∂z2

∣

∣

∣

∣

z=
d
2

= 0 (18.112)

and see what condition arises for d. This value will correspond to the most constant magnetic
field. When we do so we get

− (R2 + (d
2
)2) + f(d

2
)2 = 0 (18.113)

which simplifies to d = R. So, we can make B vary least at z = d
2

if we set d = R.
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Chapter 19

Comprehensive Exam, part 3 -

Covers: Modern Physics, Quantum

Mechanics, Particle Physics

19.1 Problem

What is Compton scattering? What role did it play in the early days of quantum
theory? You probably recall an argument that treats the photon and electron as
classical particles, and derives the correct shift in wavelength for the scattered
photon. What can you say (or guess or speculate or vaguely sketch) about how
this process can be treated in a fully quantum mechanical way? (You shouldn’t
really have to do any calculations here at all. The last question amounts to: in
broad, qualitative strokes, how might you apply some of the more advanced stuff
you’ve learned recently to analyze Compton scattering?)

v, m

λ λ′

θ

φ

Figure 19.1: The Compton scattering dia-
gram. Here, we have a particle of wave-
length λ coming in from the left. It scat-
ters off a particle of mass m and scatters
at angle θ. The other particle recoils with
velocity v and scatters at an angle φ.

Figure 19.1 shows the diagram that we need. A photon treated as a particle with wave-
length λ comes in from the left at the speed of light c, collides with a particle at rest, and
scatters off at some angle θ. After the collision, the photon has wavelength λ′. We can apply
conservation of relativistic energy and momentum (where we use the quantum formulas for
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the photon: p = h/λ and E = hc/λ). Conservation of energy gets us

hc

λ
+mc2 =

hc

λ′
+ γmc2. (19.1)

Conservation of momentum gets us

h

λ
=
h

λ′
cos θ + γmv cosφ (19.2)

h

λ′
sin θ = γmv sinφ. (19.3)

Squaring and adding the equations:

γ2m2v2 =

(

h

λ
− h cos θ

λ′

)2

+

(

h sin θ

λ′

)2

(19.4)

=
h2

λ2
− 2h2

λλ′
cos θ +

h2

λ′2
. (19.5)

We can solve the energy conservation equation for v and use this to write γ2m2v2 in terms
of λ and λ′.

γ2m2c4 =

(

hc

λ
+mc2 − hc

λ′

)2

(19.6)

1 − v2

c2
=

m2c4
(

hc
λ

+mc2 − hc
λ′

)2 (19.7)

v2

c4
=

1

c2
− m2c2
(

hc
λ

+mc2 − hc
λ′

)2 (19.8)

So,

γ2m2v2 = (γ2m2c4)

(

v2

c4

)

(19.9)

=

(

hc

λ
+mc2 − hc

λ′

)2
(

1

c2
− m2c2
(

hc
λ

+mc2 − hc
λ′

)2

)

(19.10)

=
h2

λ2
+
h2

λ′2
+ 2

hmc

λ
+ 2

hmc

λ′
− 2

h2

λλ′
(19.11)

Thus,

h2

λ2
+
h2

λ′2
+ 2

hmc

λ
− 2

hmc

λ′
− 2

h2

λλ′
=
h2

λ2
− 2

h2

λλ′
cos θ +

h2

λ′2
(19.12)

(λ′ − λ)mc = h(1 − cos θ) (19.13)

λ′ = λ+ (h/mc)(1 − cos θ) (19.14)

According to Griffith’s Particle textbook:
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What finally settled the issue [of whether the electric field is quantized as particles
called photons] was an experiment conduced by A. H. Compton in 1923. Compton
found that the light scattered from a particle at rest is shifted in wavelength,
according the equation

λ′ = λ + λc(1 − cos θ) (19.15)

where λ is the incident wavelength, λ′ is the scattered wavelength, θ is the scat-
tering angle, and

λc = h/mc (19.16)

is the so-called Compton wavelength of the target particle (mass m). Now this
is precisely the formula you get (Problem 3.24) if you treat light as a particle
of zero rest mass with energy given by Planck’s equation, and apply the laws of
conservation of (relativistic) energy and momentum–just what you would for an
ordinary elastic collision. That clinched it; here was direct and incontrovertible
experimental evidence that light behaves as a particle, on the subatomic scale.

1st order Higher Order

Figure 19.2: The Compton scatter-
ing Feynman diagrams. The first
diagram is the 1st order Feynman
diagram. The second is one of the
many higher order diagrams.

In order to treat Compton scattering properly, you have to draw Feynman diagrams for
the process and calculate the numbers associated with them. The sum of all the numbers
would be the amplitude for Compton scattering to happen. Figure 19.2 shows the first order
Feynman diagram for this process and one of the higher order terms. I am not exactly sure
how you would use the Feynman calculus to figure out the wavelength shift for a particular
angle since things like direction don’t matter in Feynman diagrams. . .

19.2 Problem

Calculate the lifetime (in seconds) for each of the four n = 2 states of hydrogen.
Hint: You’ll need to evaluate matrix elements of the form 〈ψ100|y|ψ211〉, and so
on. Remember that x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. Most of
the integrals are zero, so think before you calculate.
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Suppose we have a Hamiltonian Ĥ = Ĥ0 + Ĥ1. We can write an arbitrary solution as a
sum of the eigenstates of H0:

|ψ(t)〉 =
∑

n

cn(t)eiE
(0)
n t/~ |E(0)

n 〉 . (19.17)

According to time dependent perturbation theory, we can write the time dependent constants
out front as

cf(t) = δfi −
i

~

∫ t

0

dt′ei(E
(0)
f

−E
(0)
i

)t′/~ 〈E(0)
f |Ĥ1(t

′)|E(0)
i 〉 . (19.18)

We have
∣

∣

∣
〈E(0)

f |ÛI(t)|E(0)
i 〉
∣

∣

∣

2

= |cf(t)|2. (19.19)

This is the probability of making a transition from the initial to the final state in time t.
We will apply this formalism to the case of the hydrogen atom in an electromagnetic

field. We will treat the EM field as the perturbing Hamiltonian Ĥ1 and use the hydrogen
eigenstates as the unperturbed basis.

We will deal with some initial state |i〉 that is an energy eigenstate of the hydrogen atom
and |f〉 as some other energy eigenstate. Our goal will be to calculate the probability per
unit time of making a transition from this state to a lower energy state by emitting a photon
in any direction. Eventually, we will want to calculate the lifetime of the excited state.

The perturbing Hamiltonian is

Ĥ1 →
e

mec
Â · h

i
∇ +

e2

2mec2
Â

2
(19.20)

With

Â =
∑

k,λ

c

√

2π~

ω

(

âk,λ
ǫ(k, λ)

ei(k·r)

√
V

+ â†
k,λ

ǫ(k, λ)
e−i(k·r)

√
V

)

(19.21)

Since Ĥ1 is independent of time, we have

| 〈f |ÛI |i〉 |2 =
1

~2

∣

∣

∣

∣

∫ t

0

dt′ei(E
(0)
f

−E
(0)
i )t′/~

∣

∣

∣

∣

2
∣

∣

∣
〈f |Ĥ1|i〉

∣

∣

∣

2

(19.22)

=
1

~2

sin2((E
(0)
f − E

(0)
i )t/2~)

(E
(0)
f − E

(0)
i )/2~

| 〈f |Ĥ1|i〉 |2 (19.23)

This is the probability of having a transition from i to f with the emission of some particular
photon of wave vector k. The time t imposed by experimental set-ups allows us to without
loss of generality take the large time limit. In that case, we can use the representation of
the Dirac delta function

lim
t→∞

1

π

sin2(ta)

ta2
= δ(a) (19.24)
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to write the transition probability as

lim
t→∞

| 〈f |ÛI|i〉 |2 =
πtδ((E

(0)
f − E

(0)
i )/2~)

~2
| 〈f |Ĥ1|i〉 |2. (19.25)

The total probability of having a photon emission is equal to the sum over all photons of the
probability of that photon being emitted.

P =
∑

λ

∑

k

| 〈f |Û I |i〉 |2 (19.26)

The sum over λ accounts for the two polarizations of the photons. Following the discussion
in the Townsend book, we are supposed to apply periodic boundary conditions to space.
This quantized the photons so that their wave vector is always of the form

kxL = 2πnx kyL = 2πny kzL = 2πnz (19.27)

with nx, ny, nz = 0,±1,±2, . . .. When we do this, we find that the number of states with
wave vector between k and k + dk in the solid angle dΩ is

(

L

2π

)3

k2dkdΩ (19.28)

with L the size of our box. Using E = ~ω, we can write the number of states with energy
between E and E + dE as:

V

(2π)3

ω2

~c3
dEdΩ (19.29)

Thus, our total probability of having a transition is

P =
∑

λ

∑

k

| 〈f |Û I(t)|i〉 |2 =
∑

λ

∫

dE

∫

dΩ
πtδ((E

(0)
f − E

(0
i )/2~)

~2
| 〈f |Ĥ1(t)|i〉 |2

V ω2

(2π)3~c3

(19.30)
Of course, the total final energy is just the energy of the photon plus the energy of the
electron: E

(0)
f = Enf

+ E. So we can write our delta function as

δ((E
(0)
f −E

(0
i )/2~) = δ

(

Enf
+ E −Eni

2~

)

= 2~δ(E − (Eni
− Enf

)) (19.31)

This delta function kills one of our integrals:

P =
∑

λ

∫

2πt

~
| 〈f |Ĥ1|i〉 |2

V ω2

(2π)3~c3
(19.32)

Thus, the probability of making the transition per unit time is

R =
∑

λ

∫

2π

~
| 〈f |Ĥ1|i〉 |2

V ω2

(2π)3~c3
. (19.33)
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Since R is independent of time, we know that that if we have N atoms an amount dN will
decay in a time dt such that

dN = −NRdt (19.34)

N(t) = N(0)e−Rt = N(0)e−t/τ (19.35)

Thus, the lifetime of our atom is τ = 1/R. Now, we calculate

〈f |Ĥ1|i〉 = 〈1k,λ
| 〈nf , lf , mf |Ĥ1|ni, li, mi〉 |0〉 (19.36)

Note that the second term in the perturbing Hamiltonian

Ĥ1 →
e

mec
Â · h

i
∇ +

e2

2mec2
Â2 (19.37)

will contribute nothing to our integral because the terms in it are all of the form âk,λ
âk,λ

,

â†
k,λ

â†
k,λ

, and â†
k,λ

âk,λ
. None of these take us from state with no photons to a state with 1

photon. Thus, our inner product becomes

〈1k,λ
| 〈nf , lf , mf |Ĥ1|ni, li, mi〉 |0〉 =

e

mec
e

√

2π~

ωV

∫

d3rψ∗
nf ,lf ,mf

e−ik·rǫ(k, λ) · ~

i
∇ψni,li,mi

(〈1k,λ
|â†

k,λ
|0〉) (19.38)

with

〈1k,λ
|â†

k,λ
|0〉 = 〈1k,λ

|1k,λ
〉 . (19.39)

We make the approximation

e−ik·r → 1. (19.40)

This is called the electric dipole transition. Now, we can use a trick to simplify equation 19.38.
The trick is:

[Ĥ0, x̂i] =

[

p2

2µ
, x̂i

]

(19.41)

=
∑

j

[

p̂j p̂j

2µ
, x̂i

]

(19.42)

=
1

2µ

∑

j

(p̂j[p̂j , x̂i] + [p̂j , x̂i]p̂j) (19.43)

(19.44)

= −1

µ

∑

j

p̂ji~δi,j = −i~
µ
p̂i (19.45)
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Therefore,

〈nf , lf , mf |p̂i|ni, li, mi〉 =
iµ

~
〈nf , lf , mf |[Ĥ0, x̂i]|ni, li, mi〉 (19.46)

=
iµ

~
(Enf

− Eni
) 〈nf , lf , mf |x̂i|ni, li, mi〉 (19.47)

= −iµω 〈nf , lf , mf |x̂i|ni, li, mi〉 (19.48)

Thus,
〈nf , lf , mf |p̂|ni, li, mi〉 = −iµω 〈nf , lf , mf |r̂|ni, li, mi〉 (19.49)

Therefore, we can replace ~

i
∇ = p̂ in equation 19.38 with −iµωr̂. When we do this, we get

R =
∑

λ

∫

2π

~

(

c

√

2π~

ωV

)2

e2
ω2

c2

∣

∣

∣

∣

∫

d3rψ∗
nf ,lf ,mf

r · ǫ(k, λ)ψni,li,mi

∣

∣

∣

∣

2
V ω2dΩ

(2π)3c3~
(19.50)

=
αω3

2πc2

∑

λ

∫
∣

∣

∣

∣

∫

d3rψ∗
nf ,lf ,mf

r · ǫ(k, λ)ψni,li,mi

∣

∣

∣

∣

2

dΩ (19.51)

We can write r · ǫ as

r · ǫ =

(

ǫx + iǫy√
2

)(

x− iy√
2

)

+

(

ǫx − iǫy√
2

)(

x+ iy√
2

)

+ ǫzz (19.52)

= r

√

4π

3

(

ǫx + iǫy√
2

Y1,−1 −
ǫx − iǫy√

2
Y1,1 + ǫzY1,0

)

(19.53)

If we are dealing with the 2s to 1s transition, equation 19.51 contain an integral of the form

∫

d3rR∗
1,0Y

∗
0,0r

√

4π

3

(

ǫx + iǫy√
2

Y1,−1 −
ǫx − iǫy√

2
Y1,1 + ǫzY1,0

)

R2,0Y0,0 (19.54)

Inside of this are three summed integrals of the form
∫

dΩ Y ∗
1,mY0,0 (19.55)

This integrates to 0 because of the orthogonality of the Y ’s. Thus, R → 0 and τ → ∞.
Or, the 2s → 1s transition is forbidden, at least to first order. Next, we can calculate the
2p→ 1s transition. It contains the integral

∫

d3rR∗
1,0Y

∗
0,0r

√

4π

3

(

ǫx + iǫy√
2

Y1,−1 −
ǫx − iǫy√

2
Y1,1 + ǫzY1,0

)

R2,1Y1,mi
(19.56)

We can again exploit the orthogonality of the Y ’s
∫

dΩY ∗
1,mY1,mi

= δm,mi
(19.57)
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to rewrite this integral as
√

1

3

(

ǫx + iǫy√
2

δmi,1 −
ǫx − iǫy√

2
δmi,−1 + ǫzδmi,0

)
∫ ∞

0

drr3R∗
1,0R2,1 (19.58)

The R dependence integrates to

∫ ∞

0

drr3R∗
1,0R2,1 =

√

3

2

28

35
a0 (19.59)

so the absolute value squared of the large integral is

1

3

(

ǫ2x + ǫ2y
2

δmi,1

ǫ2x + ǫ2y
2

δmi,−1ǫ
2
zδmi,0

)

215

39
a2

0. (19.60)

Now, we can assume that a photon is equally likely to be emitted with any polarization,
from which we deduce that

〈ǫ2x〉 = 〈ǫ2y〉 = 〈ǫ2y〉 . (19.61)

But we also know that ǫ is a unit vector. So,

〈ǫ2x〉 + 〈ǫ2y〉 + 〈ǫ2y〉 = 1 (19.62)

Thus

〈ǫ2x〉 = 〈ǫ2y〉 = 〈ǫ2y〉 =
1

3
(19.63)

Since all we are interested in is the average life time of the state, we can take the average of
our integral and it become, for all the mi:

∣

∣

∣

∣

∫

d3rψ∗
nf ,lf ,mf

r · ǫ(k, λ)ψni,li,mi

∣

∣

∣

∣

2

=
1

3

(

1

3

)

215

39
a2

0 =
215

311
a2

0. (19.64)

Thus, we have

R2p→1s =
αω3

2πc2

∑

λ

∫
(

215

311
a2

0

)

dΩ (19.65)

There are 2 polarization states. We are interested in decays into all of space so the infinites-
imal solid angle integrates to 4π. Thus, our integral becomes

R2p→1s =
αω3

c2
217

311
a2

0. (19.66)

Note that ~ω = E2p −E1s = 1
2
mec

2α2(1 − 1/22) so

R2p→1s =

(

2

3

)8

α5mec
2

~
(19.67)

and

τ2p→1s =
1

R2p→1s
. (19.68)
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19.3 Problem

Estimate (or really: put a bound on) the ground state energy of Hydrogen using
the variational principle, using a trial wave function of the form: ψ(r) = Ae−br2

.

I can’t crack this problem but I will write down what I did. The whole trick to this
problem is to calculate 〈E〉. We know is at least as large as the ground state. Therefore,
it is an upper bound on ground the state energy. Once we calculate 〈E〉, we can find the b
that minimizes this function to get the lowest upper bound. First, we need ψ to be properly
normalized:

1 =

∫

ψ2d3r =

∫ ∞

0

A2e−2br2

4πr2dr (19.69)

1 = 4πA21

4

√

π

(2b)3
(19.70)

A2 =

(

2b

π

)3/2

(19.71)

Now, I will calculate 〈E〉. We know that the Hamiltonian is

Ĥ → −~
2∇2

2µ
− e2

r
(19.72)

〈E〉 = 〈ψ|Ĥ|ψ〉 (19.73)

=

∫ ∞

0

Ae−br2

(

− ~
2

2µ

1

r2

∂

∂r

(

r2 ∂

∂r

)

− e2

r

)

Ae−br2

4πr2dr (19.74)

= 4πA2

∫ ∞

0

dre−2br2

(

− ~
2

2µ

(

6 − 14br2 + 4b2r4
)

− re2
)

(19.75)

Now, using the Gaussian integral equations from the Townsend book1, we get

〈E〉 = 4π

(

2b

π

)3/2(

− ~
2

2µ

(

6
1

2

√

π

2b
− 14b

1

4

√

π

(2b)3
+ 4b2

3

8

√

π

(2b)5

)

− e2

4b

)

(19.76)

= 8b

√

2b

π

(

− ~
2

2µ

13

8

√

π

2b
− e2

4b

)

(19.77)

= −13

2

~
2

µ
b− 2e2

√

2b

π
. (19.78)

Unfortunately, this equation is wrong since it grows indefinitely negative for sufficiently large
b. This is unphysical. If I could have gotten the true equation, I would have set

∂

∂b
〈E〉 = 0. (19.79)

I would have solve for this for b and then plug b’s value into 〈E〉 to find my upper bound for
the ground state energy. Do you have any idea what I am doing wrong in this problem?

1Travis told me how to do the last Gaussian integral over the phone – thanks for the tip!
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19.4 Problem

You’ve learned about the Born approximation in the context of 3D scattering
problems. It is possible to define a Born approximation also for 1D problems,
where instead of wanting to calculate the differential cross section, the relevant
predictions are just the reflection and transmission coefficients R and T . Explain
why the Born approximation expression for R is:

R ≈
( m

~2k

)2
∣

∣

∣

∣

∫

e2ikxV (x)dx

∣

∣

∣

∣

2

. (19.80)

Then use it to calculate the reflection probability when the scattering center is a
rectangular barrier of “height” V0 and width a. In what limit(s) do you expect
the answer to be accurate?2

Ah, problem 13.4 from Townsend’s book. A solution to the one-dimensional Schrödinger
equation is

ψ(x) = Aeikx +

∫

dx′G(x, x′)
2m

~2
V (x′)ψ(x′) (19.81)

where
∂2

∂x2
G(x, x′) + k2G(x, x′) = δ(x− x′). (19.82)

To prove this, all I have show that it is a solution to

Ĥψ(x) = Eψ(x) (19.83)

where E = ~
2k2/2m.

Ĥψ(x) =

(

− ~
2

2m

∂2

∂x2
+ V (x)

)

ψ(x) (19.84)

= − ~
2

2m

∂2

∂x2

(

Aeikx +

∫

dx′G(x, x′)
2m

~2
V (x′)ψ(x′)

)

+ V (x)ψ(x) (19.85)

=
~

2k2

2m
Aeikx − ~

2

2m

∫

dx′(δ(x− x′) − k2G(x, x′))
2m

~2
V (x′)ψ(x′) + V (x)ψ(x)

(19.86)

=
~

2k2

2m
Aeikx − V (x)ψ(x) +

~
2k2

2m

∫

dx′G(x, x′)
2m

~2
V (x′)ψ(x′) + V (x)ψ(x) (19.87)

=

(

~
2k2

2m

)(

Aeikx +

∫

dx′G(x, x′)
2m

~2
V (x′)ψ(x′)

)

(19.88)

= Eψ(x). (19.89)

2By the way, there is an error in your formula. The fraction in front is m/~2k but you wrote m/~k. Oops
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We can integrate G(x, x′) from just below to just above x = x′ Note that the k2G(x, x′) term
integrates to 0 in this infinitesimal range and the delta function integrates to 1:

∫ x=x′

+

x=x′

−

∂2

∂x2
G(x, x′) +

∫ x=x′

+

x=x′

−

k2G(x, x′) =

∫ x=x′

+

x=x′

−

δ(x− x′) (19.90)

(

∂G

∂x

)

x=x′

+

−
(

∂G

∂x

)

x=x′

−

= 1. (19.91)

We can now show that a solution for G(x, x′) is

G =

{

1
2ik
eik(x−x′) x > x′

1
2ik
e−ik(x−x′) x < x′

(19.92)

To do so, we show that this is a solution for x < x′, x = x′, and x > x′. First, observe that
for x < x′ we have

∂2

∂x2
G(x, x′) + k2G(x, x′) =

−k2

2ik
eik(x−x′) +

k2

2ik
eik(x−x′) = 0 (19.93)

as expected. For x > x′, we have

∂2

∂x2
G(x, x′) + k2G(x, x′) =

−k2

2ik
e−ik(x−x′) +

k2

2ik
e−ik(x−x′) = 0 (19.94)

as expected. Finally, we calculate
(

∂G

∂x

)

x=x′

+

−
(

∂G

∂x

)

x=x′

−

=
ik

2ik
eik(x−x′)

∣

∣

∣

x=x′

− −ik
2ik

e−ik(x−x′)
∣

∣

∣

x=x′

= 1 (19.95)

as is needed for our function to work at x = x′. So this is a valid solution for G.
We can now apply the Born approximation:

ψ(x) ≈ Aeikx. (19.96)

We use this approximate solution on the right side of equation 19.81. We will then take
the x → −∞ limit of the equation to find the reflection term. In this limit, we have:
G(x, x′) = 1

2ik
exp(−ik(x − x′)):

ψ(x) −−−−→
x→−∞

Aeikx +

∫

dx′
1

2ik
e−ik(x−x′) 2m

~2
V (x′)Aeikx (19.97)

−−−−→
x→−∞

Aeikx + Ae−ikx

∫ ∞

−∞
dx′

e2ikx′

2ik

2m

~2
V (x′) (19.98)

Thus

R ≈
( m

~2k

)2
∣

∣

∣

∣

∫

e2ikxV (x)dx

∣

∣

∣

∣

2

. (19.99)
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We will now work with the potential barrier

V (x) =

{

V0 0 < x < a

0 elsewhere
. (19.100)

Solving for R gets

R =
( m

~2k

)2
∣

∣

∣

∣

∫ a

0

e2ikxV0dx

∣

∣

∣

∣

2

(19.101)

=

(

mV0

~2k

)2 ∣
∣

∣

∣

1

2ik
e2ikx

∣

∣

∣

∣

a

0

∣

∣

∣

∣

2

(19.102)

=

(

mV0

~2k2

)2 ∣
∣

∣

∣

e2ika − 1

2i

∣

∣

∣

∣

2

(19.103)

=

(

mV0

~2k2

)2 ∣
∣

∣

∣

eika − e−ika

2i

∣

∣

∣

∣

2

(19.104)

=

(

mV0

~2k2

)2

sin2(ka) (19.105)

=

(

V0

2E

)2

sin2(ka) (19.106)

This formula is valid in the large energy limit E >> V0. In fact, the Townsend book gives
the exact expression for T = 1 − R as

T =
1

1 + (V 2
0 /4E(E − V0)) sin2(

√

(2m/~2)(E − V0)a)
(19.107)

Or,

R =
(V 2

0 /4E(E − V0)) sin2(
√

(2m/~2)(E − V0)a)

1 + (V 2
0 /4E(E − V0)) sin2(

√

(2m/~2)(E − V0)a)
(19.108)

In the large energy limit, this equation reduces to

R −−−−→
E>>V0

(V0/2E)2 sin2(
√

2mE/~2a)

1 +O(V0/E)2
=

(

V0

2E

)2

sin2(ka) (19.109)

just as we predicted.

19.5 Problem

Let




E0 0 A
0 E1 0
A 0 E0



 (19.110)
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be the matrix representation of the Hamiltonian for a three-state system using
basis states |1〉, |2〉, and |3〉. If the state of the system at t = 0 is |ψ(0)〉 = |2〉,
what is |ψ(t)〉? How about if |ψ(0)〉 = |3〉?

The first part is easy. Note that |2〉 is an energy eigenstate of the Hamiltonian with eigenvalue
(energy) E1:





E0 0 A
0 E1 0
A 0 E0









0
1
0



 = E1





0
1
0



 (19.111)

Since it is an eigenstate, we know that |ψ(t)〉 = |2〉. |3〉 is not an eigenstate so we will have
to write it as a linear combination of energy eigenstates. We begin by finding the energy
eigenstates of the Hamiltonian:

∣

∣

∣

∣

∣

∣

E0 − λ 0 A
0 E1 − λ 0
A 0 E0 − λ

∣

∣

∣

∣

∣

∣

= 0. (19.112)

Or,
(E0 − λ)2(E1 − λ) −A2(E1 − λ) = 0 (19.113)

So λ = E1, and λ = E0 ± A. The λ = E0 + A solution leads to:





E0 0 A
0 E1 0
A 0 E0









a
b
c



 = (E0 + A)





a
b
c



 (19.114)

or

E0a+ Ac = (E0 + A)a (19.115)

a = c (19.116)

The middle equation says that b = 0. An eigenstate is

|E0 + A〉 =
1√
2
(|1〉 + |3〉) (19.117)

The λ = E0 − A solution leads to




E0 0 A
0 E1 0
A 0 E0









a
b
c



 = (E0 − A)





a
b
c



 (19.118)

or

E0a + Ac = (E0 −A)a (19.119)

a = −c. (19.120)
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Another eigenstate is

|E0 − A〉 =
1√
2
(|1〉 − |3〉). (19.121)

The final eigenstate (which we already saw) is

|E1〉 = |2〉 . (19.122)

We can write |2〉 as a linear combination of the eigenstates:

|2〉 =
1√
2
(|E0 + A〉 − |E0 − A〉). (19.123)

We can easily do the time evolution to the eigenstates

|ψ(t)〉 = eiĤt/~ |ψ(0)〉 (19.124)

= eiĤt/~ |2〉 (19.125)

= eiĤt/~
1√
2
(|E0 + A〉 − |E0 − A〉) (19.126)

=
1√
2
(ei(E0+A)t/~ |E0 + A〉 − ei(E0−A)t/~ |E0 −A〉) (19.127)

=
1

2
eiE0t/~

((

eiAt/~ − eiAt/~
)

|1〉 +
(

eiAt/~ + e−iAt/~
)

|3〉
)

(19.128)

= eiE0t/~ (i sin(At/~) |1〉+ cos(At/~) |3〉) . (19.129)

We find that

| 〈1|ψ(t)〉 |2 = sin2(At/~) (19.130)

| 〈3|ψ(t)〉 |2 = cos2(At/~) (19.131)

19.6 Problem

What is Bell’s Theorem and what does it prove? (No need to recapitulate the
mathematical derivation, which is a standard thing in several texts. Just summa-
rize the structure of the argument, and then explain its implications.)

The general setup of Bell’s inequality is a physical process where two spin 1/2 particles are
at the same time. Because of conservation laws, we know that the total spin in any direction
must be 0. If one particle is measured to be spin up in some direction, the other particle
must be spin down. For momentum to be conserved, the two particles must leave in opposite
directions. We can set up two Stern-Gerlach machines to measure the spin components of
the two particles along any axis that we wish.

Bell’s theorem requires assuming that there are hidden variables (the spin of the particles)
and that there is locality. When you assume these two features, you can assign to the particles

186



a definite value of spin for three different spacial components. We might not know what the
value is before measuring it, but it is there. The particle must already know going into the
SG machine what its spin is. Because we set the SG machines far apart, we know form
locality that the measurement of one particle’s spin cannot affect the measurement of the
other particle’s spin. If you do the book keeping, you can show that these two assumptions
leads to predictions about the probability of certain spin measurements. We can use or SG
machine to measure spin along three separate axis. We will call these three axis a, b, and
c. We can set up the first SG machine to measure first particle’s spin along one of these
axis and the second SG machine to measure the second particle’s spin along the other axis.
Bell’s inequality says that

P (+a; +b) ≤ P (+a; +c)P (+c; +b) (19.132)

where P (+a; +b) is the probability of the first SG machine measuring spin +a and the
second SG machine measuring spin +b, etc. The important point is that standard quantum
mechanics predicts probabilities in certain situations that violate this inequality. And this
inequality has been put up to experimental tests. The Experiments are in agreement with
quantum mechanics but in violation of Bell’s inequality.

From these experimental results, we must conclude that some of the assumptions that
Bell uses in deriving his inequality are wrong. Since Bell assumes that there are hidden
variables and that the world works in a local way, we must conclude that it is impossible for
the world to both have hidden variables and be local.
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Chapter 20

Comprehensive Exam, part 4 -

Covers: Statistical Mechanics,

Thermodynamics, Astrophysics

20.1 Problem

“Here is a very simplified model of the unwinding of two-stranded DNA molecules:
a zipper has N links; each link has a state in which it is closed with energy 0 and
a state in which it is open with energy ǫ. We require that the zipper can only
unzip from the left end, and that the link number s can only open if all links to
the left (1, 2, . . . , s−1) are already open. Show that the partition function is given
by

X =
1 − exp[−(N + 1)ǫ/kT ]

1 − exp(−ǫ/kT )
(20.1)

and then find the average number of open links in the limit ǫ ≫ kT .” – Travis
Norsen

The partition function is

Z ≡
∑

r

e−Er/kT . (20.2)

The sum is over all possible states. For this example, we can make a list of all possible states
and their particular energy. There is only one state where all the links are closed and it
has energy 0. There is only one state where one link is open and it has energy ǫ. There is
only one state where two links are open and it has energy 2ǫ. The argument continues until
we get to the final state where all links are open and the energy is Nǫ/kT . Using this The
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partition function is

Z = e0 + e−ǫ/kT + e−2ǫ/kT + . . .+ e−(N−1)ǫ/kT + e−Nǫ/kT (20.3)

Z =
N
∑

n=0

(

e−ǫ/kT
)n
. (20.4)

It is a mathematical fact that

S =
N
∑

n=0

Rn =
1 − RN+1

1 − R
. (20.5)

From this:

Z =
1 − e−(N+1)ǫ/kT

1 − e−ǫ/kT
. (20.6)

The probability for each state is

Pr =
e−Er/kT

∑

e−Er/kT
. (20.7)

The average number of open links is equal to the weighted average of the number of open
links:

N̄ =

N
∑

n=0

ne−nǫ/kT

∑

e−Er/kT
. (20.8)

In the large ǫ limit, all the terms are 0. The average number of open links is 0. This makes
sense. When the system is very cold, the protein will stay mostly intact.

20.2 Problem

“A cold white dwarf is held up against gravitational collapse by the pressure of
degenerate electrons. What is the total energy of a gas of N non-interacting, non-
relativistic degenerate electrons confined to a sphere of radius R? Assuming the
white dwarf contains equal numbers of neutrons and protons, rewrite this energy
in terms of the mass M of the star. The other main contribution to the energy
is the gravitational binding energy (which is of course negative). Write down an
expression for the total energy of the star as a function of R (and other relevant
parameters). Show that E(R) has a minimum for some particular value of R,
and solve for this to find the mass-radius relation for a white dwarf. (Check your
answer by confirming that, unlike chocolate cakes, white dwarfs shrink when you
add mass to them.)” – Travis Norsen

Stars are big so boundary effects are negligible in comparison to the effects due to the matter
well inside the star. Therefore, the particular boundary conditions we pick won’t matter.
We will therefore solve the time independent Schrödinger equation for the electrons in the
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star as though our star is a cube of length L and volume V = L3. We will use periodic
boundary conditions:

ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L) = ψ(x, y, z). (20.9)

We can approximate the electrons as a free gas. The reason why this is a reasonable as-
sumption is because the positive charge from the protons will be fairly evenly distributed so
their net effect will be weak. Approximately, the only net effect due to the protons will be to
confine the electrons within the star. The solution to the Schrödinger equation is therefore

ψ ∝ ekxx+kyy+kzz. (20.10)

The energy of the electron is

ǫ =
~

2k2

2me

(20.11)

where me is the mass of an electron. To satisfy the boundary conditions, we have

kx =
2π

L
nx ky =

2π

L
ny kz =

2π

L
nz (20.12)

Electrons obey the Fermi exclusion principle so only one electron can occupy each quantum
state. The number of possible integers nx for which kx lies in the range between kx and
kx + dkx is

∆nx =
L

2π
dkx. (20.13)

The total number of states with wave vector between kx and kx + ∆kx, ky and ky + ∆ky,
and kz and kz + ∆kz is the product of the number of possible integers in the three ranges.
We have to add an extra factor of 2 since each of these state can can be filled up with two
electrons each of different spin:

ρkd
3k = 2

(

L

2π
dkx

)(

L

2π
dky

)(

L

2π
dkz

)

= 2
V

(2π)3
dkxd

3k =
V

π2
k2dk. (20.14)

The total number of states in this same range with energy between ǫ and ǫ+ dǫ is

|ρǫdǫ| = |ρkdk| = ρk

∣

∣

∣

∣

dk

dǫ

∣

∣

∣

∣

dǫ = ρk

∣

∣

∣

∣

dǫ

dk

∣

∣

∣

∣

−1

dǫ =
V

π2

(2me)
3/2

~3
ǫ1/2dǫ. (20.15)

We calculate the electron with highest energy as

N =

∫ ǫf

0

ρǫdǫ =
V

π2

(2me)
3/2

~3

2

3
ǫ
3/2
f . (20.16)

It follows that

ǫf =

(

3
2
π2 ~

3

(2m)3/2

N

V

)2/3

. (20.17)

191



We can calculate the total energy due to electron degeneracy as

Ed =

∫ ǫf

0

ǫρǫdǫ (20.18)

We get

Ed =

∫ ǫf

0

V

π2

(2me)
3/2

~3
ǫ3/2dǫ =

1

5

35/3

25/3

π4/3
~

2N5/3

meV 2/3
. (20.19)

For every electron, there is a proton and a neutron (of roughly the same mass mp. Therefore,
we have M = 2mpN . Also, V = 4

3
πR3.

Ed =
1

5

37/3

214/3m
5/3
p me

M5/3

R2
. (20.20)

We can write Ed as

Ed ≡ KM5/3

R2
(20.21)

where K is a constant of proportionality.
Next, we consider the gravitational potential energy. We can imagine building up the

star from thin shells one at a time. When we add the shell of radius r and thickness dr, the
gravitational potential energy due to this shell is

dU(r) = dM × V (r) = −GM(r)dM

r
. (20.22)

M is the mass of the already assembled star of radius r and dM is the mass of the thin shell.
The mass of the interior sphere is equal to the volume times the density so M = 4

3
πr3 M

V
.

The mass of the shell is dM = 4πr2drM
V

. The energy associated with the shell is

dU(r) = −G
4
3
πr3 M

V
4πr2drM

V

r
= −16π2GM2

3V 2
r4dr. (20.23)

The total potential energy is the integral over all the shells

U =

∫ R

0

dU = −16π2GM2

3V 2

1

5
R5 = −3

5

GM2

R
. (20.24)

The total energy is thus

E = Ed + U =
KM5/3

R2
− 3

5

GM2

R
. (20.25)

We set ∂E/∂R = 0 and solve for R to minimize the energy. We find that

R =
10

3

K

GM1/3
. (20.26)

Plugging in for K, we find that

R =
2

3

37/3

214/3m
5/3
p me

1

GM1/3
. (20.27)
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20.3 Problem

“Suppose a star were made of an ideal gas composed of molecules of mass m
at a uniform temperature T . By considering hydro-static equilibrium, develop
a differential equation that should be satisfied by ρ(r), the mass density as a
function of radius. (You shouldn’t bother solving the equation – the work here is
just setting up a well-defined DE with only the one dependent variable, ρ(r).)” –
Travis Norsen

We will consider a small rectangle chunk of gas a radius r from the center of the star. The
rectangle has a width dA and a height dr. The mass density in the chunk is ρ(r). Gauss’
Law says the gravitational force on the chunk is

F =
GMρdAdr

r2
(20.28)

where M is the mass inside of the chunk. The mass is

M =

∫ r

0

ρ(r)4πr2dr. (20.29)

The pressure difference between the top and bottom of the chunk due to the surrounding
gas must exactly cancel out the gravitational force in order for there to be equilibrium:

[P (r + dr) − P (r)]dA =
GMρ(r)dAdr

r2
. (20.30)

The idea gas law says that
P (r) = n(r)kT (20.31)

where n(r) is the number density of the gas. we know there is only a radial dependence to
the pressure because of the radial symmetry of the star. The mass density is related to the
number density by ρ(r) = mn(r). Our equilibrium equation becomes

[ρ(r + dr) − ρ(r)]
kT

m
dA =

GMρ(r)dAdr

r2
. (20.32)

We note that

ρ(r + dr) − ρ(r) =
dρ

dr
dr (20.33)

so our equation becomes

dρ(r)

dr
=

Gm

kTr2

(∫ r

0

ρ(r)4πr2dr

)

ρ(r). (20.34)

Rearranging and the differentiating both sides of the equation with respect to r gets us

kT

Gm
r2ρ

dρ

dr
=

∫ r

0

ρ4πr2dr (20.35)

kT

Gm

(

2rρ
dρ

dr
+ r2

(

dρ

dr

)2

+ r2ρ
d2ρ

dr2

)

= ρ4πr2. (20.36)
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20.4 Problem

“The latent heat (or ‘heat of fusion’) for the ice-water phase transition is 80
calories/gram. What is the probability that a bucket of pure water (no ice) at
zero degrees Celsius spontaneously forms a one gram ice cube?” – Travis Norsen

The heat of fusion is the negative of the energy per unit mass required to convert water to
ice. Thus, to create a gram of ice requires adding to the system Q = −80 calories. Google
says that Q = 330 J. We know that the change in entropy for this transition is

∆S =

∫

dQ

T
=
Q

T
(20.37)

where we have used the fact that the temperature does not change during the freezing. The
definition of entropy is S = k log(Ω). We know that

P ∝ Ω. (20.38)

Formally, the probability of this transition happening is equal to the number of micro states
for which this is possible divided by the total number of micro states:

P =
Ωfreeze

Ωtotal
(20.39)

For our example we have
S0 + ∆S = k log(Ωfreeze) (20.40)

Where S0 is the entropy of the liquid with no frozen ice. Thus,

P =
e(S0+∆S)/k

Ωtotal
=
eS0/ke∆S/k

Ωtotal
. (20.41)

Now, we know that an overwhelming number of the possible micro states will involve the
whole system in its equilibrium situation where there is just water. In this situation, the
entropy is S0. In equation form, we have

S0 ≈ k log(Ωtotal) (20.42)

So
Ωtotal ≈ eS0/k. (20.43)

Therefore, to good approximation the probability for our initial state to spontaneously form
an ice cube is approximately

P ≈ e∆S/k ≈ eQ/kT (20.44)

With Q = 330J , k = 1.38 × 10−23J/K, and T = 273.15K, we have

P ≈ e−1023

. (20.45)

This is very small!
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20.5 Problem

“In The Physical Universe, Shu discusses the ‘Missing-Mass Problem’ on pages
259-60. Summarize what you know about this topic that goes beyond what’s in
Shu’s (rather outdated) book.” – Travis Norsen

There have been two major developments that I am familiar with. First was the discovery
of gravitational lensing. Studying dark matter with gravitational lensing is kind of like
studying the shape of a piece of glass by looking through it and seeing how the background
is distorted. General Relativity says that that the trajectory of light is bent by the presence
of gravity. Actually, I think we are supposed to say that light still goes in straight lines and
it is instead the structure of space time that gets bent by the presence of matter.Anyway,
I will wave my hands here because I don’t know much General Relativity. By it is fair to
think of light as begin deflected by gravity.

Figure 20.1: The shady looking man in the figure represents dark matter and is supposed to
remind the reader that the jury is still out on what exactly dark matter is made up out of.

The classic example of this is shown in figure 20.1. It shows a diagram of the most famous
example of gravitational lensing. A star sits behind a bunch of dark matter. The light from
the star leaves isotropically but only particular directions of light will be bent enough to
come back to the earth. What the person on earth sees when he looks into the sky is a ring
of light from the star. These rings are called Einstein rings and have actually been observed
in the sky.
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Of course, Einstein rings are seen only when the alignment is very close to perfect so
they are rare. In real life, we usually only see multiple images of the object. This is enough
information to learn quite a bit about the dark matter lens. This technique where multiple
lenses are involved is called strong gravitational lensing and has been used to learn much
about the structure of heavy clumps of dark matter.

Figure 20.2: The shear correlation of galaxies caused by weak gravitational lensing. Each
of these galaxies are supposed to come from a unique source who’s shape is distorted only
slightly.

After strong lensing came weak lensing. Not always will a gravitational lens be so strong
that multiple images are seen. Often,the dark matter will just distort the shape and orien-
tation of a galaxy. The dark matter adds a radial shear correlation to the ellipticity of the
galaxies. Where there are big spots of dark matter in the sky, the galaxies will preferentially
be distributed around the dark matter as in figure 20.2. By measuring shear correlation, we
can learn about the structure of the dark matter.

This is a statistical technique. Were it not for dark matter, one would have no reason to
believe that there was any correlation between the shapes of galaxies. After all, the galaxies
in a particular spot of the sky come from vastly different depths so how could their galactic
evolution have any relation to one another. When we found this correlation, it was very
strong evidence for the existence of dark matter. And now it can be used a method for
mapping out the dark matter in the universe.

It is actually also being used as a way to get better statistics about regular galaxies
in the universe. The fear with gathering statistics about galaxies by spotting them in the
electromagnetic spectrum is that there will be systematic errors associated with what types
of galaxies we will see. When we instead gather statistics about galaxies that we find using
gravitational lensing, the thought is that there are fewer systematics involved.

The second major development in the missing mass problem came from an observation
of what is called the bullet cluster. A large challenge facing the theory of dark matter is
the empirical fact that whenever we see dark matter in the sky (either from the velocity
distribution of stars in a galaxy or from lensing), we also see regular matter in the same
place. This lead some to hypothesize that instead of there being mass that we can’t see, that
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instead our knowledge of how how gravity works is wrong on the large astronomical scales.
Theorist have proposed alternate gravity theories which try to explain the dark matter effects
without the need for invisible matter.

Very convincing evidence came out against the viability of modified gravity when scien-
tists found in the sky two galaxies that had collided with each other. What is exciting about
the collision is that it vastly changed the trajectory and the shape of the visible matter. This
can be seen in the electromagnetic spectrum. But the dark matter was relatively unaffected
by the collision and kept going in its normal trajectory. This can be seen by weak lensing.
The dark matter and the regular matter are separated in the sky. The simulations of what
this should look like if dark matter exists look perfectly like the observational data. But it
is very hard to explain this observation with a modified gravity theory.

Another thing. Apparently physicists have figured out what percentage of the universe
is dark matter. I think it is like 30%. I have no idea how this is done.

20.6 Problem

“The heat capacity of non-metallic solids at sufficiently low temperatures is pro-
portional to T 3. Explain why. Also explain why metals behave differently.” –
Travis Norsen

The specific heat caused by lattice vibrations is of the form c
(L)
v = AT 3. The specific head

due to the electron gas is c
(e)
v = γT . The specific heat for a non-metallic solid is entirely due

to lattice vibrations and is equal to AT 3. The specific heat for a metal is due to both the
electron gas and the lattice vibrations and is therefore equal to γT + AT 3.

f

ǫ

∆ǫ ≈ kT

1.0

Figure 20.3: The Fermi function for a free electron gas.

We can understand the lattice vibration’s T 3 dependence as follows. Rief write down
the Hamiltonian for all of the positive charges in a metal. He then describes how we can
do a change of variables to make the Hamiltonian have the form of 3N independent simple
harmonic oscillators. Each of these is a phonon–a matter wave in the metal. Each oscillator
has angular frequency ωr and energy ǫr = (nr + 1

2
)~ωr. This is equation 10 · 1 · 11 in Rief.

At temperature T , most of our phonons will have energy less than kT . As an equation,
we have ~ω ≈ kT . The total number of phonons N̄ will be proportional to the volume in ω
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space containing all the phonons (with energy less than kT ). The volume is proportional to
ω3 which is proportional to T 3. Thus, the average energy is proportional to the number of
states times their energy. This is proportional to T 4. Since the energy is proportional to T 4,
the specific heat (the change in energy versus change in temperature) must be proportional
to T 3.

The only thing that could cause a wrinkle in my argument is a fact brought up in Rief
that there is a certain cutoff angular frequency that phonons can not exceed. Since our
upper bound angular frequency is ~ω ≈ kT , we can safely assume that all of our phonons
will have angular frequency smaller than the cutoff.

We can understand the electron gas’ T dependence as follows. We can approximate the
behavior of the electrons in a metal as a free electron gas. In its lowest energy state, all
the electrons are in the lowest allowed energy states. As the temperature increases, more
and more electrons begin to occupy higher and higher energy states. Reif proves that for
an electron gas, the probability of a state of energy ǫ being occupied is equal to the Fermi
function f with

F (ǫ) =
1

eβ(ǫ−µ) + 1
. (20.46)

This is equation 9 · 16 · 4. For relatively small T , we sketch this function in figure 20.3. We
see that Electrons with energy roughly within kT of the edge energy ǫF will move to a higher
energy state. There are roughly g(ǫF )kT of these electrons where G(ǫ) is the density of levels
per unit volume with energy ǫ. Therefore, the total energy change will be approximately
equal to the number of states times their change in energy:

E ≈ G(ǫF )kT × kT ∝ T 2. (20.47)

We know that the density of levels is a property of the metal in question and is not a function
of temperature. The specific heat must be proportional to temperature.

20.7 Problem

“Considering the earth as a thermodynamic system, it’s clear that over geological
timescales the total energy is (roughly) constant: on average, the earth radiates
heat out into space at the same rate it absorbs heat from the sun. But what about
the second law of thermodynamics? Why doesn’t the entropy of the earth increase
steadily over geologic timescales? And hence: what fact or facts about the earth
or the universe as a whole is/are ultimately responsible for the viability of life on
earth?” – Travis Norsen

We know that entropy always goes up. Since the entropy on the earth remains roughly
constant, it must be the case that entropy somewhere else goes up. The increase in entropy
comes from radiation leaving the earth. The light that the sun gives to us is highly ordered
and has a low entropy. The light and heat that the earth radiates is fairly disordered and
has a high entropy. Therefore, we conclude that the only way that life on earth can stay
nice and orderly is by creating a mess somewhere else (outer space).
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Appendix A

How and Why to Think About

Scattering in Terms of Wave-Packets

Instead of Plane-Waves

Travis Norsen, Joshua Lande
Marlboro College, Marlboro, VT 05344

S. B. McKagan
JILA and NIST, University of Boulder, CO, 80309

Abstract

We discuss “the plane wave approximation” to quantum scattering and tunneling using
simple one-dimensional examples. The central point of the paper is that the calculations
of reflection and transmission probabilities in standard textbook presentations involve an
approximation which is almost never discussed. We argue that it should be discussed ex-
plicitly, and that doing so provides a simple alternative way to derive certain formulas that
are used in the standard calculations. We also calculate, for a simple standard example,
expressions for the R and T probabilities for an incident Gaussian wave-packet of arbitrary
width. These expressions can be written as a power series expansion in the inverse packet
width. We calculate the first non-vanishing corrections explicitly.

A.1 Introduction

Scattering is arguably the most important topic in quantum physics. Virtually everything we
know about the micro-structure of matter, we know from scattering experiments. And so the
theoretical techniques involved in predicting and explaining the results of these experiments
play a justifiably central role in quantum physics courses at all levels in the physics cur-
riculum, from Modern Physics for sophomores through Quantum Field Theory for graduate
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students.

Given the importance and centrality of this topic, we should be particularly careful about
clarifying its physical and conceptual foundations – both for ourselves and for our students.
It is the main contention of this paper that these foundations are not typically as clear as they
could be. The specific problem we address is the fact that the scattering particle is almost
always described as a (suitably modified) plane-wave, rather than a physical, normalizable,
finite-width wave-packet. As we will explain in the following section, this standard plane-
wave account is fraught with conceptual problems which have been documented to cause
confusion and errors among students, and which may also cause confusion among experts.

In the following section, we present a simple alternative way of deriving certain formulas
(which play a central role in the calculation of various scattering probabilities and which are
usually justified in a complicated and confusing way in the context of the plane-wave account
of scattering) from a straightforward analysis of the kinematics of wave-packets. We thus
demonstrate that many of the conceptual problems associated with the plane-wave analysis
(and some pointless mathematical complications, to boot) can be quite simply avoided – all
while preserving the mathematical simplicity and accessibility of the standard plane-wave
calculation.

In subsequent sections, we present what we believe (surprisingly) to be some novel calcu-
lations of the scattering probabilities when the incident particle is represented by a Gaussian
wave-packet. The novelty consists in exact expressions for the reflection and transmission
(R and T ) probabilities: these can be expanded in powers of the inverse packet width, and
the individual terms can be calculated analytically. We thus show explicitly that the usual
plane-wave expressions for R and T emerge in the limit of an infinitely-wide packet.

That, of course, is no surprise. But often (in that small minority of texts which even
discuss it) the wave-packet analysis is presented as an afterthought – e.g., a more physically
and conceptually realistic way of re-deriving the plane-wave expressions for R and T . This
conveys the impression that the wave-packet analysis is only a sort of heuristic, with the
“really correct” plane-wave results emerging when one takes the packet width to infinity.
But this impression is both false and dangerous. The really correct probabilities are the
ones based on the actual properties of incident particles, and these will always be properly
represented as finite-width wave-packets. It is the plane-wave expressions which are an ap-
proximation to the wave-packet probabilities, not vice versa. There is thus harmony between
the mathematical and the conceptual: the thing that is properly regarded as fundamental
(both conceptually and in terms of providing the rigorously exact predictions for experi-
ments) is wave-packets. Hence our conclusion: it is in terms of wave-packets that we should
think about scattering ourselves, and introduce scattering to students.
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A.2 The plane-wave account and its problems

Most students first encounter the quantum mechanical treatment of scattering with the
simple example of a 1-D particle incident on a potential step:

V (x) = V0 θ(x) =

{

0 for x < 0
V0 for x > 0

. (A.1)

We will base most of our discussion on this example, though, as will be obvious, most of
what we have to say applies to scattering problems in general.

The familiar calculation of R and T probabilities for the potential step proceeds as follows.
One finds solutions to the time-independent Schrödinger equation

− ~
2

2m
ψ′′(x) + V (x) ψ(x) = E ψ(x) (A.2)

valid on the two sides of the origin:

ψk(x) =

{

Aeikx +Be−ikx for x < 0
Ceiκx +De−iκx for x > 0

(A.3)

where

κ2 = k2 − 2mV0

~2
= k2 − p2. (A.4)

Then, citing as an initial condition that particles be incident from (let us say) the left, one
argues on physical grounds that the coefficient D (describing particle flux incident from the
right) should vanish, leaving

ψk(x) =

{

Aeikx +Be−ikx for x < 0
Ceiκx for x > 0

. (A.5)

where one interprets the A term as representing incident flux, B as the reflected flux, and C
as the transmitted flux.

A number of conceptual problems associated with the plane-wave analysis are already
manifest. Several features of the argument (such as writing the most general solution of the
Schrödinger equation in terms of complex exponentials rather than sines and cosines, and the
elimination of the D term) are based on a certain intuitive physical picture of the scattering
process: particles propagate in from the left, reflect or transmit at x = 0, and subsequently
propagate out to the left or right. The fact that the particles propagate suggests the complex
exponentials, and the fact that particles can never be propagating to the left in the x > 0
region warrants setting D = 0.

But rigorously speaking, Equation A.5 and the intuitive physical picture we partially
based it on, are in conflict. For example, according to Equation A.5, there is never a time
when the particle was definitely incident from the left (and hence no real argument that
it shouldn’t be in the x > 0 region moving to the left). Another way to say this is that

203



the physically realistic initial condition we had in mind (that once upon a time there was a
particle approaching the step with some definite width, position, and speed) is inconsistent
with the wave function we actually write down: the latter represents a particle which is
infinitely spread out through all of space and which as been forever, timelessly reflecting and
transmitting from the barrier. The standard argument thus muddles together two distinct
steps – setting up the initial conditions and finding a solution. This may seem efficient, since
it is difficult to write down a general solution without already having in mind the idea of an
initially-incident propagating plane-wave. But what experts perceive as efficient, students
find confusing.

Experts are probably also used to thinking of the timeless, steady-state wave function as
some kind of limit for an infinitely-wide incident packet. But how exactly this limit works
is unclear, even to most experts. We will show in the subsequent section that it is actually
quite straightforward to understand – so simple in fact that we advocate introducing it to
students from the very beginning and thus avoiding completely the kinds of issues being
raised here.

Let us continue now sketching and critiquing the standard plane-wave analysis of this
problem.

Equation (A.5) actually solves Equation (A.2) at x = 0 only if ψ and ψ′ are continuous
at there. Imposing these conditions gives the following familiar expressions relating the
amplitudes of the incident, reflected, and scattered waves:

B

A
=
k − κ

k + κ
(A.6)

and
C

A
=

2k

k + κ
. (A.7)

Note that even writing down equations A.6 and A.7 requires recognizing that the value of A
is an arbitrary initial condition which then sets the values of B and C. In working through
this derivation with students, we have observed that while students have no trouble verifying
that these equations are true, they are often baffled by why we choose to write them down
in the first place. Writing these particular equations also anticipates an ultimate goal of
deriving the reflection and transmission probabilities R and T , a goal which is often not
obvious a priori to students.

Further, even when it is clarified that the goal is to derive R and T , it is not entirely clear
how to proceed, unless one is already familiar with the derivation. According to the standard
probability interpretation of the wave function, the reflection and transmission probabilities
should be given by the area under the reflected and transmitted part of |ψ|2, respectively,
divided by the area under the incident part of |ψ|2. Since all these areas are infinite, one
can’t calculate the reflection and transmission probabilities as one would naively expect.
However, it is quite tempting (and quite wrong) to assume that the infinite widths simply
cancel and that the reflection and transmission coefficients are given by:

R = |B|2/|A|2 (A.8)

204



and
T = |C|2/|A|2 (A.9)

We have observed that this is a common mistake for students to make, but most textbooks
do not address it. The actual R and T values are proportional not to the ratio of probability
densities (associated with the appropriate outgoing and incident part of the wave), but of
the probability densities times the group velocities, or equivalently, times the wave numbers:

R =
vg(k)|B|2
vg(k)|A|2

=
k|B|2
k|A|2 =

|B|2
|A|2 =

(

k − κ

k + κ

)2

(A.10)

and

T =
vg(κ)|C|2
vg(k)|A|2

=
κ|C|2
k|A|2 =

4kκ

(k + κ)2
. (A.11)

where

vg(k) =
dω(k)

dk
=

~k

m
. (A.12)

Here ω(k) = E(k)/~ = ~k2/2m. One can verify that R + T = 1.
Many textbooks simply write down Equations A.10-A.11 without explanation, or worse,

avoid them altogether by skipping the step potential and going straight to tunneling through
a square barrier, using Equations A.8-A.9 without mentioning that they happen to be cor-
rect only for the special case where the wave numbers are equal on both sides. At least one
textbook even writes down Equation A.8 as the obvious expression for R, and then “derives”
the correct expression for T by stating that it follows from the convention that R + T = 1!
This is bad because it deliberately hides an important issue that should be confronted explic-
itly. But, one might think, at least it’s mathematically valid. But even that is questionable:
with the plane-wave scattering state (which is timelessly, simultaneously incident, reflected,
and transmitted) why should it be true that R + T = 1? At any particular moment (no
matter how far in the future) it seems quite possible that the particle is neither reflected
nor transmitted but it rather still incident. And so practically every mathematical step is
clouded by physical assumptions which are at odds with the actual mathematics.

The vast majority of QM textbooks justify Equations A.10-A.11 by introducing the
probability current

j =
−i~
2m

(

ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)

(A.13)

which describes the flow of quantum mechanical probability, as proved by the fact that the
time-dependent Schrödinger equation entails the continuity equation

∂ρ

∂t
+
∂j

∂x
= 0 (A.14)

with ρ = |ψ|2 the standard expression for probability density in the theory.
For a plane wave with ψ = Aeikx, Equation A.13 gives the probability current:

j =
~k

m
|A|2 (A.15)
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which equals the probability density |A|2 times the group velocity defined previously.
These textbooks state, usually with little explanation, that the reflection and transmission

coefficients are given by the ratios of the individual probability currents for the reflected and
transmitted terms to the incident current:

R =
|jR|
jI

(A.16)

and

T =
jT
jI
. (A.17)

where jI ∼ k|A|2 is the probability current for the incident wave function ψI = Aeikx, and
analogously jR ∼ −k|B|2 and jT ∼ κ|C|2.

Equations A.16-A.17 and the resulting Equations A.10-A.11 can be understood somewhat
intuitively by arguing that if the incoming and transmitted waves are traveling at different
speeds, then it makes sense that the amount transmitted should be proportional to the
ratio of the speeds. However, it is difficult to make a rigorous, rather than hand-waving,
argument for why, a priori, Equations A.16-A.17 are the correct expressions for the reflection
and transmission coefficients.

It is also difficult to intuitively relate the probability current approach to the interpreta-
tion of the probability as the area under the curve. Furthermore, it is not intuitively clear
why the relevant speed to use is the group velocity, dω/dk, rather than the phase velocity,
ω/k. In fact, if students investigate an animation of plane wave motion by writing a com-
puter program or using a simulation 1, only the phase velocity will be apparent to the eye.
Furthermore, while the the group velocity of the transmitted wave is smaller than that of
the incident wave, the phase velocity will actually be larger, so it is quite easy to develop
incorrect intuitions based on the behavior of plane waves. It is quite difficult to get an intu-
itive sense of the group velocity of a plane wave at all, unless one thinks of it as an infinitely
wide wave packet, in which case one can imagine the group velocity as the speed with which
this entire packet moves through space. In fact, thinking of very large wave packets seems
to be the only way to gain an intuitive sense of plane waves at all – as we will argue in more
detail subsequently.

Thus, although the ratio of probability currents does give the correct answer it is far from
clear to students (and no doubt many experts) why this should be. Moreover, probability
current is a sophisticated concept, which is typically introduced solely for the purpose of
deriving the formulas for R and T . Introducing such a concept in the middle of a derivation
places extra cognitive load on students, increasing the likelihood that they will give up on
understanding and just accept the results “on faith,” as magic formulas to be memorized
and used without comprehension.

Further, the same fact that makes this detour into probability currents necessary – that
we are dealing with unphysical plane-wave states – can cause further conceptual difficulties,

1See, for example, the PhET simulation Quantum Tunneling and Wave Packets :
http://phet.colorado.edu/new/simulations/sims.php? sim=quantumtunneling
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as shown by physics education research on this topic [7]. Plane waves are mathematically
simple. But they completely fail to capture the inherently time-dependent processes that
they are being used to describe. For example, we say that a particle approaches a barrier
from the left, and then part of it is transmitted and part of it is reflected. The language
we use to talk about scattering processes matches the physical processes themselves (e.g.,
in a real experiment, particles are shot toward a target at a certain time and emerge in
some direction or other at some later time) – but there is a deep disconnect between, on
the one hand, the language and the physical processes and, on the other hand, the quantum
mechanical description in terms of plane-waves.

In summary, the analysis of 1-D scattering in terms of plane wave states, although math-
ematically simple, requires enough overhead and raises enough conceptual difficulties that
the central physical lessons are significantly obscured. Wouldn’t it be nice if there were some
way of treating this topic that (a) didn’t require the overhead of probability current and (b)
forced students to think, from the very beginning, that we are really dealing with physical,
normalizable wave packets to which the plane waves are merely a convenient approximation?

Such an approach will be outlined in the following section. In later sections we present
also techniques for calculating and approximating R and T probabilities when the incident
particle is represented by a gaussian wave packet. These techniques are probably too ad-
vanced for students in an introductory course. But our hope (and reason for including them
here) is that they may help teachers of quantum physics to realize, fully and explicitly, that
the plane wave formulas – e.g., Equations (A.10) and (A.11) – are approximations, which
are “good” (only) in a certain, intuitively sensible range of physical situations (having to do
with the width of the incident packet relative to other length scales in the problem). This
perspective is clarifying, and may help repair and prevent the sorts of difficulties mentioned
above.

A.3 Scattering probabilities and packet widths

x = 0

V (x) = V0

w

ψ = Aeik0x

V (x) = 0

Figure A.1: A Caption Needs to Go Here...

Consider a wave packet approaching the “scattering target” at x = 0 for the potential
defined in Equation (A.1). Figure A.1 is a diagram of this setup. Assume the packet has
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an almost-exactly constant amplitude (A) and wavelength (λ0 = 2π/k0) in the region (of
width wI) where the amplitude is non-vanishing, as shown in the Figure. Thus, where the
amplitude is non-zero, the packet will be well-approximated by a plane wave:

ψ = Aeik0x. (A.18)

We may assume this incident packet is normalized, so that wI |A|2 ≈ 1.
What happens as the packet approaches and then interacts with the potential step at

x = 0? To begin with, the packet retains its overall shape as it approaches the scattering
center (that is, we assume that the inevitable spreading of the wave packet is negligible on
the relevant timescales). It simply moves at the group velocity corresponding to the central
wave number for the region x < 0:

v<
g =

~k0

m
. (A.19)

We then divide the process into the following three stages:

• The leading edge of the packet arrives at x = 0

• The constant-amplitude “middle” of the packet is arriving at x = 0

• The trailing edge of the packet arrives at x = 0

Suppose the leading edge arrives at time t1. Then the trailing edge will arrive at t2 satisfying

t2 − t1 = wI/v
<
g = wIm/~k0. (A.20)

And for intermediate times, t1 < t < t2, we will have – in some (initially small, then bigger,
then small again) region surrounding x = 0 – essentially the situation described in Equation
(A.5), namely: a superposition of rightward- and leftward-directed plane waves (just to the
left of x = 0) and a rightward-directed plane wave with a different wave number (to the
right). And the same relations derived in the previous section for the relative amplitudes of
these three pieces will still apply.

While crashing into the scattering center, the incident packet “spools out” waves – with
amplitudes B and C given in Equations (A.6) and (A.7) – which propagate back to the left
and onward to the right, respectively. These scattered waves will also be wave packets, with
the leading edges of the reflected and transmitted packets formed at time t1 and the trailing
edges of the reflected and transmitted packets formed at time t2.

This gives a very simple and illuminating way to derive Equations (A.10) and (A.11).
Consider first the reflected packet. The probability of reflection, R, is by definition just its
total integrated probability density – which here will be its intensity |B|2 times its width
wR. But the width of the reflected packet will be the same as the width of the incident
packet: because these two packets both propagate in the same region, they have the same
group velocity, so the leading edge of the reflected packet will be a distance wI to the left of
x = 0 when the trailing edge of the reflected packet is formed. Thus, we have

R = wR|B|2 = wI |B|2 ≈ |B|2
|A|2 (A.21)
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where we have used the normalization condition for the incident packet wI |A|2 ≈ 1.
Similarly, the total probability associated with the transmitted wave will be its intensity

|C|2 times its width wT . But wT will be smaller than wI because the group velocity on the
right is slower than on the left. In particular: the leading edge of the transmitted packet
is created at t1; the trailing edge is created at t2; and between these two times the leading
edge will be moving to the right at speed

v>
g =

~κ0

m
(A.22)

where κ2
0 = k2

0 − p2 is the (central) wave number associated with the transmitted packet.
Thus, the width of the transmitted packet – the distance between its leading and trailing
edges – is

wT = v>
g (t2 − t1) =

κ0

k0

w (A.23)

and so the transmission probability is

T = wT |C|2 ≈
κ0|C|2
k0|A|2

(A.24)

in agreement with Equation (A.11).
To summarize, one can derive the correct general expressions for R and T merely by

considering the kinematics of wave packets, without ever mentioning probability current. In
particular, the perhaps-puzzling factor of κ0/k0 in the expression for T has an intuitive and
physically clear origin in the differing widths of the incident and transmitted packets, which
in turn originates from the differing group velocities on the two sides.

This route to the important formulas is actually simpler than the one traditionally taken
in introductory quantum texts: there is a clearly defined initial condition and a definite
process occuring in time; probability only enters in the standard way (as an integral of
the probability density |ψ|2); and the two quantities needed to define the probabilities (the
packet widths and amplitudes) are arrived at separately and cleanly. This approach thus
has several virtues in addition to simplicity. First, with proper guidance, focusing on wave
packets and a dynamical process in which something (namely scattering) actually happens
in time can help students think about the physical process physically and/or to connect
the mathematics up with real examples. Second, thinking in terms of wave packets can
help students recognize that the formulas developed above for reflection and transmission
probabilities (and this point applies equally well to three-dimensional scattering situations)
are approximations and to understand when those approximations do and do not apply.

In particular, the argument presented here suggests that the precise mathematical ex-
pressions for R and T above will apply only in the limit of very wide incident packets. This
has several aspects. First, we are justified in neglecting the dynamical spreading of the
wave packet (and hence, e.g., treating the reflected packet as having the same width as the
incident packet) only if the speed of spreading is less than the group velocity, that is, if
∆k << k0, where ∆k ∼ 1/∆x ∼ 1/wI is the width of the incident packet in k-space. This
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implies that wI >> λ0, in other words, that the width of the wave packet is much larger
than the characteristic wavelength in the region where the amplitude is non-vanishing.

Further, the plane-wave style derivation of the amplitudes assumes that, for some time
interval (roughly, t1 < t < t2), the wave function’s structure in some (variable) spatial region
around x = 0 is indeed given by Equation A.5. But these conditions will simply fail to
apply if the actual wave function is (in the appropriate space and time regions) insufficiently
plane-wave-like, e.g., if the amplitude of the wave varies appreciably over a length scale
λ0 = 2π/k0. Thus (assuming a smooth spatial envelope for the packet) the formulas will be
valid in the limit wIλ0, which is mathematically equivalent to the limit noted previously.

A.4 Gaussian wave packet scattering from a step po-

tential

It is possible to work out the exact R and T probabilities for a Gaussian wave packet
incident on the potential step of Equation (A.1). Most of the derivation is worked out in
several texts [1, 11], though invariably these texts fail to write down the exact expressions for
R and T and instead make last-minute approximations which result in the plane wave results
developed previously. But it is worth pushing through the calculation to the end, if only to
illustrate that there is an exact result to which the plane wave formulas are approximations.
Having the exact result in hand also allows one to analytically pick off explicit expressions
for first non-vanishing corrections to the plane wave result. That the corrections are small
in precisely the limits discussed at the end of the previous section, is a nice confirmation of
that discussion.

We begin with an incident Gaussian wave packet, with central wave number k0 and width
σ and centered, at t = 0, at x = −a:

ψ(x, 0) = (πσ2)−1/4eik0(x+a)e−(x+a)2/2σ2

(A.25)

We then follow Shankar’s text and proceed in four steps.
Step 1 is to find appropriately normalized energy eigenfunctions for the step potential.

These may be parametrized by k and are (up to normalization) just the plane wave states
given previously:

ψk(x) =
1√
2π

[(

eikx +
B

A
e−ikx

)

θ(−x) +
C

A
eiκxθ(x)

]

(A.26)

where, as before, κ2 = k2−2mV0/~
2 and B/A and C/A are to be interpreted as the functions

of k given by Equations (A.6) and (A.7). The overall factor of 1/
√

2π out front is chosen so
that

∫

ψ∗
k′(x)ψk(x)dx = δ(k − k′). (A.27)

We are here assuming that only eigenstates with energy eigenvalues E = ~
2k2/2m > V0 will

be present in the Fourier decomposition of the incident packet (and hence we fail to make

210



explicit special provision for those ψk for which κ is imaginary). Note also that there are two
linearly independent states for each E only one of which is included here. The orthogonal
states will have incoming, rather than outgoing, plane waves for x > 0; such states will never
enter given our initial conditions.

Step 2 is to write the incident packet as a linear combination of the ψks:

ψ(x, 0) =

∫

ψk(x) φ(k, 0) dk (A.28)

where (assuming σ << a so the amplitude of the incident packet vanishes for x > 0)

φ(k, 0) =

(

σ2

π

)1/4

e−(k−k0)2σ2/2eika (A.29)

turns out to be the ordinary Fourier Transform of ψ(x, 0).
Step 3 is to write ψ(x, t) by appending the time-dependent phase factor to each of the

energy eigenstate components of ψ(x, 0):

ψ(x, t) =

∫

ψk(x) φ(k, t) dk

=

∫

ψk(x) φ(k, 0) e−iE(k)t/~ dk

=

(

σ2

4π3

)1/4 ∫

e
−i~k2t

2m e
−(k−k0)2σ2

2 eika ×
[

eikxθ(−x) +

(

B

A

)

e−ikxθ(−x) +

(

C

A

)

eiκxθ(x)

]

dk.

We can then finally – Step 4 – analyze the three terms for physical content. The first
term, aside from the θ(−x), describes the incident Gaussian packet propagating to the right.
For sufficiently large times (when the incident packet would have support exclusively in the
region x > 0) the θ(−x) kills this term – i.e., the incident packet eventually vanishes.

The second and third terms describe the reflected and transmitted packets, respectively.
If the factors (B/A) and (C/A) were constants, we would have Gaussian integrals which we
could evaluate explicitly to get exact expressions for the reflected and transmitted packets
– which would themselves, in turn, be Gaussian wave packets which could be (squared and)
integrated to get exact expressions for the R and T probabilities. However, these factors are
functions of k. It is not unreasonable to treat them as roughly constant over the (remember,
quite narrow) range of k where φ(k, 0) has support. This is the approach taken by Shankar
(and, at least by implication, several other texts) and the result is precisely the plane wave
expressions for R and T we developed earlier.

But another approach (which, surprisingly, we have not found in the literature) is also
appealing. Consider the second and third terms of Equation (A.30) – which represent (for
late times when these terms are non-vanishing) the reflected and transmitted packets. These
can be massaged to have the overall form (again assuming t sufficiently large that the θ
factors can be dropped)

ψR/T (x, t) =

∫

eikx

√
2π

φR/T (k, t) dk. (A.30)
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Putting the two terms in this form requires a change of variables – from k to −k for the
R term, and from k to

√

k2 − p2 for the T term. The resulting expressions for the k-space
distributions of the reflected and transmitted packets are:

φR(k, t) =

(

σ2

π

)1/4

e
i~k2t
2m e

−(k+k0)2σ2

2 e−ika

(

k + κ

k − κ

)

(A.31)

and

φT (k, t) =

(

σ2

π

)1/4

e
−i~(k2+p2)t

2m e
−(

√
k2+p2

−k0)2σ2

2 × eika

(

2
√

k2 + p2

√

k2 + p2 + k

)

k
√

k2 + p2
. (A.32)

But we can just as well integrate the momentum-space wave functions (to find the total
probability associated with a given packet) as the position-space wave functions. Thus,

R =

∫

|φR(k, t)|2 dk

=

(

σ2

π

)1/2 ∫

e−(k+k0)2σ2

(

k + κ

k − κ

)2

dk

=

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

(

B

A

)2

dk (A.33)

where in the last step we have done another change of variables from k to −k. This result
can be summarized as follows:

R =

∫

P (k)Rkdk (A.34)

where P (k) = |φ(k, 0)|2 is the probability for a given k associated with the incident packet,
and Rk is simply the reflection probability for a particular value of k as expressed in Equation
A.10.

The analogous result for the T term emerges after some more convoluted algebra:

T =

∫

|φT (k, t)|2 dk

=

(

σ2

π

)1/2 ∫

e−(
√

k2+p2−k0)2σ2 ×
(

2
√

k2 + p2

√

k2 + p2 + k

)2
k2

k2 + p2
dk

=

(

σ2

π

)1/2 ∫

e−(k−k0)2σ2

(

C

A

)2
κ

k
dk

=

∫

P (k)Tkdk. (A.35)

where in the next-to-last step we have made a change of variables (back!) from k to
√

k2 + p2.
These expressions are exact (subject to the assumptions noted earlier). Note that, if we

treat (B/A)2 and (C/A)2(κ/k) as constants that do not depend on k (i.e., if we approximate
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these functions by their values at k = k0, which is a good approximation so long as as the
functions don’t vary appreciably in a region of width 1/σ around k0, i.e., if the width σ of
the incident packet is very big) we are left with plain Gaussian integrals that can be done
to get back the plane-wave-approximation results we started with: R = (B/A)2 evaluated
at k = k0, etc.

Unfortunately, the actual integrals are too messy to do exactly. But we can Taylor expand
the (B/A)2 and (C/A)2(κ/k) factors around k = k0 to get a series of integrals that can be
done, resulting in a power-series expansion (in inverse powers of the packet width w) of the
exact R and T . approximations of R and T .

The first two non-vanishing terms for R and T are as follows:

R =

(

k0 − κ0

k0 + κ0

)2

+

(

2k0

κ3
0

+
8

κ2
0

)(

k0 − κ0

k0 + κ0

)2
1

σ2
+ · · · (A.36)

and

T =
4k0κ0

(k0 + κ)2
−
(

2k0

κ3
0

+
8

κ2
0

)(

k0 − κ0

k0 + κ0

)2
1

σ2
+ · · · (A.37)

We propose christening as “the plane wave approximation” the large-σ limit of these exact
results.

A.5 Discussion

Things to discuss here:

• Respond to the possible objection that “of course” the real R/T probabilities are
∫

P (k)Rkdk, etc. This objection presupposes that it is meaningful to define R and T
for plane wave states, which it is really the fundamental point of our paper to deny.
So it’s a good opportunity to clarify.

• Discuss the generalization of this R =
∫

P (k)Rkdk type result. What if P (k) has
support for k’s where funny things happen, e.g., the associated κ goes imaginary?
Does it apply to square barrier tunneling? Or is there something special about this
potential step example that makes this work out so nicely? And does it only apply for
Gaussian packets, or is it really really general?

• Discuss “real life” JILA type experiments where the plane-wave approximation is bad,
and lobby for talking about these with students in order to help motivate the wave-
packet approach.

• Figure out some better way of integrating the two main sections here, so that they
both become parts of one coherent argument.
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